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Testing Sweet Smoothing algorithm via a simulation study 

 
Least-squares exploratory factor analysis based on tetrachoric/polychoric correlations is a 

robust, defensible and widely used approach for performing item analysis, especially in the 

first stages of scale development. A relatively common problem in this scenario, however, 

is that the inter-item correlation matrix fails to be positive definite. 

In the following simulation study, we compare four alternatives in order to convert a 

not positive definite correlation matrix to a positive definite correlation matrix. In the 

simulation we include Sweet Smoothing, that is a refinement of a previous methodology 

developed by Bentler & Yuan (2011) that we label Straight Smoothing. 

 

Straight smoothing proposed by Bentler and Yuan 

Bentler and Yuan (2011) observed that the strategies to solve that are not positive 

definite (NPD) correlation matrices typically impacted all the variables in the matrix. To 

prevent this from happening, they proposed focusing the smoothing procedure only on the 

problematic variables (i.e., the ones that would potentially produce a Heywood case in the 

factor solution). Their proposal is to extract all the possible factors in the common factor 

space and to check which variables have communalities larger than 1 in the factor solution. 

Once these variables have been detected, the correlation estimates to which they are related 

are decreased by a low value k, so the smoothed 𝐑 matrix is positive definite (PD). The 

decreasing factor is arbitrary and depends on the correlation matrix at hand. In their 

numerical example, they used a value of k=.96 but any other value can be used as long as 

the information lost in the smoothed 𝐑 matrix is minimum, and the matrix 𝐑 is PD. 

Whenever we computed this approach, we implemented their method iteratively in order 

to find an optimal constant value k. In the first iteration, we multiplied the corresponding 
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values of R by a value of k=1-0.0010/(N), and decreased k progressively with the value 

0.0010/(N), until the smoothed correlation matrix 𝐑 was PD.  

It must be noted that the information lost during the smoothing procedure only has 

an effect on a (possibly small) number of variables. In the most extreme situations, all the 

information in the smoothed variables could be lost, which would be equivalent to 

removing these variables from the analysis. Again, the amount of information lost in 𝐑 can 

be quantified using expression  

𝑣 =
∑ 𝑟 − ∑ �̃�

∑ 𝑟
 

(1) 

where 𝑟  are the off-diagonal elements of the correlation matrix that is NPD, and �̃�  are 

the off-diagonal elements of the smoothed correlation matrix that is PD. A value of v of 

one would mean that no information has survived the smoothing procedure, while a value 

close to zero would mean that the amount of information destroyed is minimum. In addition 

to v, the same information could be computed for each variable in the correlation matrix. 

This index vj would be reporting the amount of information destroyed in each variable. 

As Bentler and Yuan did not explicitly name their approach, here we refer to it as 

straight smoothing. This label refers to the fact that the method attacks all the possible 

annoying variables at once.  

 

A new proposal: Sweet Smoothing 

We propose a new approach that is essentially equivalent to that of Bentler and 

Yuan, but applied very carefully, so that the amount of lost information in 𝐑 is minimal. A 

detailed description can be found in Lorenzo-Seva and Ferrando (2020). Our approach can 

be summarized with this iterative algorithm: 
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Step 1. Set the number of factors to be extracted r = 1. 

Step 2. Extract r factors from R, and check for Heywood cases. 

Step 3. If no Heywood cases are observed, increase r in 1 and go to step 2. Otherwise, 

go to next step. 

Step 4. Set the correction value k=1 - 0.0001. 

Step 5. Decrease the correlation values of the variables that showed communalities 

larger than 1 using the value k, in order to obtain the smoothed correlation 

matrix 𝐑. 

Step 6. Check if the matrix 𝐑 is PD: in this case, the algorithm ends and matrix 𝐑 is 

the smoothed correlation matrix that removes the minimum information. 

Otherwise, go to next step. 

Step 7. Decrease k with the value .0001. 

Step 8. If the value of k is lower than .5 and r is lower than the maximum possible 

number of factors in the common factor space, then it is considered that too 

much information is to be removed from the variables at hand: in this case, 

increase r in 1 and go to step 2. Otherwise, go to step 5. 

While all the information in some of the smoothed variables could be lost, the 

algorithm is expected to find the minimum number of variables that need to be smoothed, 

and aims to produce the minimum loss of information. In order to achieve it, the smoothing 

of the NPD matrix is done progressively and very carefully, removing a very low amount 

of information in each iteration. It could be said that we manipulated the NPD matrix in a 

loving way with the aim of damaging it as few as possible. This is why we label it sweet 

smoothing. 
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Simulation study 

The simulation study had two main goals. The first was to assess the amount of information 

that is lost when the five approaches discussed so far are used. The second was to assess 

the extent to which the smoothing procedures recover the model at the population level. 

The study was based on binary variables and used a full factorial design with 3×2×5=30 

conditions with 500 replicas per condition. The independent variables were: 

 
1. Number of factors (1, 2 and 3). In the population, the size of factor salient loadings 

ranged between .42 to .77; and the size of non-salient loading ranged between -.15 

to .15. 

2. Number of items (18 and 24). 

3. Size of negative eigenvalues in the NPD correlation matrices. The sizes were very 

low (in the range -0.001 and -0.05); low (in the range -0.06 and -0.10); medium (in 

the range -0.11 and -0.15); large (in the range -0.16 and -0.20); and very large (in 

the range -0.21 and -0.25).  

 

The main idea in the simulation study was to produce the responses to sets of binary 

items that would show the appropriate factor solution for the population. The total number 

of responses was 100,000, and this was the population from which random small samples 

were drawn. The size of the samples was N=200 when the number of items was 18; and 

N=300 when the number of items was 24. In order to manipulate the size of the negative 

eigenvalues, samples were drawn at random until a tetrachoric correlation matrix was found 

that was NPD, and the negative eigenvalue of which was in the appropriate range. 

We simulated data using the underlying variable approach. We used two thresholds: 

one for non-biased items (a threshold value between -.5 and .5), and another for biased 

items (a value threshold between 0.5 and 1.5). In each data generated, each item was at 
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random selected as symmetric item or as biased item. We must point out that our simulated 

dataset (N=100,000) must produce a PD polychoric matrix: it was when drawing samples 

of reduce size that the NPD polychoric matrices were expected. 

For each condition, the following analyses were computed: 

1. The population (tetrachoric) correlation matrix (that was PD) was computed and 

analyzed using Robust Unweighted Least Squares (RULS).  

2. The sample (tetrachoric) correlation matrix (that was NPD) was computed and 

factor analyzed using RULS. In the factor analysis, items were allowed to show 

communalities larger than one. 

3. The sample correlation matrix that was NPD was corrected using four approaches: 

Knol and ten Berge (1989), non-linear smoothing (Devlin et al., 1975); linear 

smoothing (Jöreskog & Sörbom, 1981); straight smoothing (Bentler & Yuan, 2011), 

and sweet smoothing. Each corrected correlation matrix was factor analyzed using 

RULS.  

4. For each factor model, communality was computed, and the index v (i.e., the 

proportion of destroyed information in the smoothed correlation matrix) was 

computed for the smoothed correlation matrices. The goodness-of-fit of the factor 

model was assessed using CFI, GFI and RMSR. 

 

Results 

The procedure proposed by Knol and ten Berge (1989) failed to converge in 70% of the 

matrices. The convergence was largest when there were 24 items and a single factor was 

expected (91.2% of convergence). However, it never converged when there were 18 items 

and the number of expected factors was 3. As the ratio of convergence for this method was 

very low in our simulation study, we do not report the outcomes of this method. 
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Table 1 shows the mean of index v for each smoothing method. As expected, sweet 

smoothing destroyed least information in the smoothed correlation matrix. On the other 

hand, non-linear smoothing destroyed a large amount of variance. It must be said that the 

amount of information destroyed was minimum for all the methods when the negative 

eigenvalue was low (i.e., eigenvalues between -0.001 and -0.05): for example, in this 

situation index v showed values of .04 and .03 for straight and sweet smoothing, 

respectively. Conversely, the amount of variance destroyed was large when the size of the 

negative eigenvalue was large (i.e., eigenvalues between -0.21 and -0.25): for example, in 

this situation index v showed values of .23 and .14 for straight and sweet smoothing, 

respectively. 

In addition, the table shows the mean bias of the estimated communality (i.e., the 

difference of the observed communality minus the population communality). As can be 

observed in the table, when no smoothing was applied, the communality was overestimated, 

while the smoothing procedures systematically underestimated the communality in the 

population. However, sweet smoothing was the method that most accurately reproduced 

the communality in the population. 

 
Table 1. Indices of the decrease in variance produced by the smoothing algorithms 

Index No smoothing Non-linear Linear Straight Sweet 

      

V -- .321 .192 .140 .089 

Bias in h 0.151 -1.393 -0.668 -0.421 -0.187 

      

 
Table 2 shows the mean of the goodness-of-fit indices of the exploratory factor 

analysis for the population correlation matrix (that was PD), and the sample correlation 

matrix (that was NPD) with no smoothing at all. It can be observed that the analysis of this 

sample correlation matrix has the effect of underestimating the true value of the goodness-

of-fit indices. The table also shows the mean of the goodness-of-fit indices of the 
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exploratory factor analysis after the various smoothing procedures have been applied. The 

worst fits were obtaining using the non-linear smoothing, while sweet smoothing recovered 

the true values in the population quite well. 

 
Table 2. Goodness-of-fit indices related to the simulation study 

 
 
 

CFI GFI RMSR 

     

Population  .942 .902 .075 

No smoothing  .931 .894 .080 

     

Smoothing techniques     

 Non-linear  .923 .863 .069 

 Linear  .941 .894 .072 

 Straight  .940 .896 .073 

 Sweet  .943 .901 .074 

     

 
The conclusion of the simulation study is that not to correct the sample correlation 

matrix when it happens to be NPD is a bad research option. In addition, sweet smoothing 

is a suitable strategy for correcting sample correlation matrices that fail to be PD. 

As the short simulation below suggests, our proposal seems to improve the behavior 

not only of the original proposal on which is based (Straight Smoothing) but also of the 

existing alternatives as well. 

For the benefit of the interested reader, we shall briefly describe the basis of the 

RULS approach used in the simulation. The parameter estimation is the same as in the 

standard ULS case. However, the standard errors and the goodness-of-fit indices derived 

from the chi-square statistic are corrected (i.e. robust corrections), using the information 

contained in the asymptotic covariance matrix. Useful further readings on the procedure 

are Li (2016) and Muthén (1993).  
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