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-1. Theoretical Bases and features 

The Graded Response model (GRM; Samejima, 1969) and the continuous response 

model (CRM; Bejar, 1977, Samejima, 1973, Wang & Zeng, 1998), are unidimensional 

Item Response Theory (IRT) models in common use in personality and attitude 

measurement. These models, however, were not initially designed for measuring non-

cognitive traits. Rather, they were intended for abilities and cognitive traits, and they were 

directly transported into the non-cognitive domains in the hope that they would also be 

suitable (e.g. Reise & Moore, 2012). In our view, in most personality/attitude applications 

they are. In other cases, however, their appropriateness is more questionable.  

 When a non-cognitive measure is fitted by using the GRM or the CRM, the trait 

that is assessed is, implicitly or explicitly, assumed to be: (a) equally meaningful at both 

ends of the continuum, and (b) normally distributed in the population of interest (see 

e.g. Morales-Vives et al., 2023). For normal-range and clearly bipolar traits, such as 

extraversion-introversion, these assumptions seem quite reasonable. For other type of 



traits such as addictive behaviors, psychiatric disorders, clinical symptoms or 

maladaptive traits, however, it is more plausible to assume that the trait (a) takes only 

positive values (Lucke, 2013), (b) is more meaningful at the upper end of the 

dimension, and (c) has a rightly skewed distribution in the population of interest.  A 

typical example of these assumed features is a psychiatric symptoms checklist 

administered in a community sample (see e.g. Morales-Vives et al., 2023). As for the 

first two assumptions, the low trait end is likely to reflect merely the absence of 

symptoms. So, a trait scale that only adopts positive values seems more natural here. 

Furthermore, if the low trait end only reflects absence of manifestations while the upper 

end reflects different degrees of severity, the trait is, clearly, more meaningful at its 

upper end. With regards to the distribution (point c), finally, most individuals will be 

expected not to suffer from clinical disorders or have very low levels, and they will be 

grouped at the lower end of the trait continuum. On the other hand, the far fewer 

individuals who do have disorders to a nonnegligible extent, will extend over the upper 

tail with a higher degree of heterogeneity. If this is so, the latent trait distribution in our 

example will have, intrinsically, a low mean and high variance both leading to a 

pronounced right skewness (e.g. Magnus & Liu, 2018; Morales-Vives et al., 2023). 

One way to accommodate the alternative trait assumptions discussed above is to 

use unipolar (or positive trait) IRT models, which were initially proposed for binary-

response items (Lucke, 2013, 2015). The UNIPOL-GC program implements log-logistic 

extensions of this type of models that are intended for graded and (approximately) 

continuous response items. They are: (a) the log-logistic graded response model (LL-

GRM; Reise et al. 2021) and (b) the log-logistic continuous response model (LL-CRM; 

Ferrando et al., 2023). Essentially, these models can be viewed as transformations of the 

standard GRM and CRM in which the trait scale is changed so as to take only positive 



values and have a rightly skewed distribution in the population of interest. More 

specifically, in the LL-GRM and the LL-CRM formulations, the trait is assumed to have 

a lognormal distribution. This change of the trait scale, however, has profound 

consequences on how the models behave in comparison to their standard counterparts 

(Lord, 1975, Yen, 1986). 

-1.1 Description of the LL-GRM and the LL-CRM: main features 

In this section we shall only provide a basic, mostly conceptual summary of the models 

implemented in the program. More technical presentations, to which the interested reader is 

referred, are provided in Reise et al. (2021) for the LL-GRM, and Ferrando et al. (2023) for 

the LL-CRM. 

The most common approach for fitting IRT models is two-stage: Calibration and 

Scoring (e.g. Mislevy & Bock, 1990). In the calibration stage, the parameters of the 

items are estimated and model-data fit at the structural level is assessed. In the scoring 

stage, provided that model-data fit is judged to be acceptable, the item parameter 

estimates are taken as fixed and now, and used to obtain individual score estimates and 

accompanying measures of (conditional) score accuracy. We shall use this schema to 

describe the main features of the two models implemented in UNIPOL-GC. 

  Consider first that the items have m ordered categories scored with successive 

integers: 1,2…m.  These categories are assumed to be separated by m-1 thresholds k 

(k=1…m-1). Now, according to the LL-GRM, the probability of responding above the k 

threshold in item j for a fixed trait level U, is: (the U stands for unipolar):   

𝑃∗(𝑋𝑗𝑘|𝜃𝑈) =
𝜖𝑗𝑘𝜃𝑈

𝛼𝑗

1+𝜖𝑗𝑘𝜃𝑈
𝛼𝑗

. (1) 



As a function of level U, equation (1) describes the Threshold Response Function 

(TRF) for this item and threshold category. The trait U is assumed to follow a 

lognormal distribution with parameters μU=0 and σU=1. So: (a) U is anchored to zero 

and has no upper limit, and (b) ln(U ) is normally distributed with zero mean and unit 

variance.  

The εjk and αj item parameters are both restricted to have positive values, and are 

“easiness” and slope/discrimination parameters, respectively. The εjk values are related to 

the marginal proportions of endorsement, so that, a high value means that a large 

proportion of people responds above the corresponding k threshold or category boundary. 

As for the slopes, at low αj values the expected TRC is flatter at almost all trait levels, 

and, the higher the αj value becomes, the more the TRC increases at low trait levels. 

A useful auxiliary item location parameter can be defined from (1) as: 

𝛿𝑗𝑘 = (
1

𝜖𝑗𝑘
)

1

𝛼𝑗
. (2) 

The δjk location parameter, which again is always positive, can be interpreted as 

follows: For each category threshold, δjk is the trait value at which the probability of 

responding above this threshold is 0.50. Overall, the interpretation of the item parameters 

so far described will (hopefully) become clearer in the illustrative example below. 

We turn now to the LL-CRM. Suppose that the item scores can be treated as 

(approximately) continuous. For practical and interpretative purposes, we shall scale the 

item scores to have values between 0 and 1. With this scaling, for fixed U, the expected 

score in item j is given by: 



𝐸(𝑋𝑗|𝜃𝑈) =
𝜖𝑗𝜃𝑈

𝛼𝑗

1+𝜖𝑗𝜃𝑈
𝛼𝑗

. (3) 

As a function of θU, the conditional expectation (3) is now the Item Response 

Function (IRF) of the LL-C model. Overall, the interpretation of the parameters in (3) is 

essentially the same as in the LL-GRM case. Again,  U , is assumed to follow a (0,1) 

lognormal distribution, and the εj and αj item parameters (again both restricted to be 

positive) retain their interpretation as “easiness” and slope/discrimination parameters 

respectively. In this case, however, εj can be viewed as a general (not threshold-related) 

“easiness” parameter. So, other things equal, the higher εj is, the higher the expected 

score for item j becomes.  Finally, an item location parameter δj can be also defined as 

  

𝛿𝑗 = (
1

𝜖𝑗
)

1

𝛼𝑗
. (4) 

And is interpreted as the θU trait level at which the expected item score is 0.5. So, 

this is the trait level that corresponds to the midpoint of the response scale, which, 

conceptually, is the scale value that marks the transition from a tendency to disagree 

with the item to a tendency to agree with it (see Ferrando, 2009).   

We shall now provide a graphical illustration of the type of item functions implied 

by the LL models. More specifically, because the LL-CRM is the simplest of the two 

models, we shall provide the LL-CRM-based IRFs corresponding to two hypothetical 

items (the TRFs have essentially the same shape, but, within each item, one curve would 

be needed for each category threshold). 

 



 

Figure 1. Item response functions (curves) in the LL-CRM 

 

To start with, the IRFs in figure 1 clearly depart from the usual CRM (or GRM) 

ogives. Here, each curve is a power function (e.g. Stevens, 1975), and its general trend 

is that the curve is concave downward, and its slope tends to increase more strongly for 

trait values close to zero and flattens as θU increases. Conceptually, this trend implies 

that the item score becomes progressively less sensitive to the trait level as this level 

increases.   

Turning now to comparisons, the general difference between both items is that 

item A is easier and more discriminating than B. First, with regards to easiness, note 

that δA is about 1, whereas δB is about 2, which means that a higher trait level is required 

in B to attain an expected score equal to the scale midpoint. Also, the area under the 



curve corresponding to A (which is proportional to the easiness value εA ) is larger than 

the area under the curve of B.  As far as discrimination is concerned, note that, in the 

IRF of item A, the slope increases more abruptly at very low, near zero θU values. This 

result implies that the αA value is higher than the αB value.  

By making appropriate (exponential) transformations of the person and the item 

easiness parameters, the TRFs and IRFs in equations (1) and (3) can be transformed to 

the corresponding functions of the standard GRM and CRM respectively. Details are 

provided in Reise et al. (2021, p.12) and Ferrando et al. (2023, equations 6 to 8). Here we 

shall only discuss the practical and substantive implications of these results. First, the 

result that the standard GRM and CRM can be obtained as re-parameterizations of the 

LL-GRM and the LL-CRM provides a basis for considering the latter as transformations 

of the former in which the scale of the trait is changed. Second, the result also shows that, 

at the calibration stage, both type of models (standard and LL) are expected to reach the 

same degree of model-data fit when calibrated in the same dataset. Thus, we have a case 

of alternative models that fit the data equally well but that are based on different principles 

and philosophies (see e.g. Samejima, 1996). Finally, because the GRM and CRM can be 

parameterized as factor-analytic models, the result implies that so are the LL-GRM and 

the LL-CRM. This third implication is highly relevant in practice, as it means that well-

established procedures can be used to calibrate the new models considered here. 

We shall now discuss the results concerned with the scoring stage. For both, the 

LL-GRM and the LL-CRM the outcomes of this stage are: (a) the individual trait point 

estimates (i.e. individual scores), and (b) the conditional measures of accuracy 

corresponding to each individual estimate. Because reliability is a unitless and bounded 

measure that applied researchers are familiar with, in our proposal we have chosen to use 

reliability as a measure of score accuracy. So, for each respondent, in addition to the 



individual score estimate, we shall provide the corresponding conditional reliability 

estimate.  

As discussed above, the score (point) estimates obtained from the LL models, are, 

essentially, non-linear (exponential) transformations of the score estimates that would 

have been obtained based on the standard counterparts of these models. So, if an IRT 

model is fitted with the sole purpose of ranking the individuals according to their trait 

levels, then it is not really worth using the models proposed here, because the rank order 

would be the same as if the conventional model had been used.   

In terms of conditional reliabilities, however, the LL models considered here and 

their standard counterparts will generally function in diametrically opposite ways. Under 

the conventional models (GRM or CRM) the items would be modelled as “difficult” 

(recall that the proportions of item endorsements when these models are appropriate are 

very low). So, the conditional reliability of the scores will be maximal at high trait levels. 

Conceptually, these results mean that the test will be considered to be highly appropriate 

for differentiating between the (few) individuals who have very high levels but will not 

be sensitive enough to differentiate between individuals at lower levels. On the other 

hand, under the models considered here (LL-GRM or LL-CRM) the conditional reliability 

curve as a function of the trait level will be decreasing, reaching its highest values at very 

low trait levels. This result implies that, according to these models, the test will accurately 

differentiate between those individuals who have no, or virtually no trait manifestations 

and those who clearly do have them. However, it will not be sensitive enough to make 

finer differentiations between those with high levels. 

The opposite predictions made by the standard and LL models (in this case the 

GRM and the LL-GRM) are illustrated in figure 2, the functions having been obtained in 



the same dataset. (Note also the different trait scaling in the abscissae axis). Assuming 

that the LL-GRM was the more correct model for this data, if the standard GRM was 

fitted instead to this data, it would then provide a very wrong picture of how the score 

accuracy functions across trait levels.  

 

 

 

 

 

 

 

Figure 2. Conditional reliabilities as a function of trait level in the GRM and LLGRM 

 

-1.2 Calibration and scoring procedures used in UNIPOL-GC 

As advanced above, by using appropriate “linearizing” transformations, both the LL-

GRM and the LL-CRM can be formulated as factor-analytic (FA) models and fitted using a 

simple and robust two-stage limited-information procedure. The calibration stage in 

UNIPOL-GC is based on this approach. So, in the LL-GRM case, the used transformation 

is a nonlinear step function governed by thresholds and based on the ‘probit’ function. This 

mechanism implies that the item scores are fitted by using the underlying-variables-

approach (UVA) FA for ordered-categorical variables (e.g. Muthén, 1993). In the LL-CRM 

case, the 0-1 scaled item scores are logit transformed (see Ferrando et al. 2023, equation 6) 
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and the transformed item scores are fitted using the linear FA model for continuous 

variables. Further details on estimation procedures and goodness-of-fit assessment are 

provided below. This first stage of calibration is carried out using the cfa function from the 

lavaan package, which requires the specification of the model and the selection of an 

estimation method. Once the initial FA estimates have been obtained, UNIPOL-GC carries 

out the reparameterization, and transforms them to the TRF or IRF item parameter estimates 

in equations (1) to (4) (i.e.  ε’s , α’s and δ’s ). Model-data fit at the structural level is also 

assessed at this stage. 

In the scoring stage, the item parameter estimates above are taken as fixed and known 

(see Mislevy & Bock, 1990) and individual point estimated scores and accompanying 

reliability estimates are obtained. At this stage, we wanted procedures that were robust and 

able to provide finite and plausible estimates for all the respondents in the sample under 

analysis, which led us to choose Bayes expected a posteriori (EAP, Bock & Mislevy, 1982) 

score estimation for both LL-GRM and LL-CRM. In both cases, and as discussed above, the 

prior distribution for U was lognormal (0,1). 

In the LL-CRM (but only in this model) maximum likelihood (ML) score estimates 

for each respondent can be obtained in closed form (Ferrando et al. 2023, equation 9). This 

result means that, for this model, finite ML score estimates can be obtained for all the 

respondents. For this reason, ML scores (see Lord, 1986) and accompanying conditional 

reliability estimates are also available at the user’s request for the LL-CRM. 

 

-1.2 Substantive and practical considerations for using the LL models 

As discussed above, the two models implemented in UNIPOL-GC are expected 

to attain the same degree of model-data fit at the calibration stage than their standard 



counterparts. In this respect, we concur with Samejima (1996) in that an acceptable 

degree of fit is indeed a necessary condition for considering a model as appropriate, but 

is not sufficient. So, in the present case, if the fit results are acceptable, both the 

standard and the unipolar versions of the model fulfill the initial necessary conditions, 

and the choice of one or the other will have to be guided mostly by substantive and 

interpretative reasons  

In principle, the LL-GRM or the LL-CRM can be considered as ‘a priori’ 

appropriate choices when the trait under study can be convincingly conceived as 

theoretically unipolar. This means that the low end of the dimension is more naturally 

interpretable as lack of trait manifestations rather than as a “symmetrical” opposite pole 

of the upper end. In terms of scalability, this trait conception implies that individuals are 

expected to be more scalable at the upper trait end (e.g. different degrees of severity) 

than at the lower end (absence of trait manifestations and undifferentiation). 

Empirically, the ‘a priori’ bases above, imply that the distribution of the item 

scores in the scale under study are expected to be markedly and consistently 

asymmetrical (rightly skewed). Again, this is a necessary but no sufficient condition, 

because items that measure a bipolar trait can also have this type of distribution if they 

are chosen to be sufficiently “difficult”. Ferrando et al. (2023) and Reise et al. (2021) 

however, noted that, if the trait under study is better conceived as unipolar, then, 

finding “easy” items that tap the lower trait end is far more difficult than finding 

“difficult” items that better measure at the upper end in which individuals with high 

levels are more differentiable. Both, Ferrando et al. (2023) and Reise et al. (2021) 

provide further empirical checks for supporting the appropriateness of the models 

implemented here. These proposals are outside the objectives of this manual, but their 

reading is recommended for potential users interested in unipolar models. 



Finally, the calibration and scoring procedures implemented in UNIPOL-GC 

have been chosen to be simple and robust. So, no estimation problems are expected to 

appear even if small samples were used. However, given the nature of the traits 

modeled with the LL-GRM or the LL-CRM, in which the majority of the sample is 

expected to remain very undifferentiated at the lower trait end, the choice of large 

samples is highly recommended if these models are to be used. 

-2. Installation and setup 

The package is available through website (https://www.psicologia.urv.cat/en/tools/lilac-

r-code/), and can be downloaded directly form the website and installed manually. To 

do so, extract all the files from the downloaded zip and save them in a folder. Next, 

install the lavaan package (Rosseel, 2012), and then open the llgm.R file and execute 

the function. 

-3. Program Usage I: Entering and importing data 

The function usage is the following: 

> llgm(data, type, model, estimator, nodes) 

 

Where the description of the input arguments are: 

Data a data matrix of raw item scores 

Type defines the type of data that has been entered. Item scores can be 

treated as  “continuous” or “graded”. If scores are defined as 

continuous data, they should be scaled from 0 to 1. If they are not, the 

program will rescale them to the 0-1 format. 



For continuous data, the user can choose the scoring method they 

prefer: Maximum Likelihood "ML" or Bayesian Expected A Posteriori 

"EAP." 

model model description using lavaan syntax. https://cran.r-

project.org/web/packages/lavaan/lavaan.pdf (p.55 – lavOptions – 

Estimator) 

estimator All lavaan estimators are available for calibration: ML, GLS, WLS, 

DWLS, ULS, DLS. PML as well as their robust variants.  

nodes Matrix of 20 quadrature points and nodes where the first column 

represents points on a lognormal 0,1 distribution and the second 

column represents the probabilities associated with each quadrature 

point on the lognormal trait scale. This matrix is already provided. 

 

-3. Program Usage II: Output 

 

The output will be printed in the console just as shown in the empirical example below. 

All the data is stored in a list where the user can find the indices with the following 

arguments: 

Parameters Contains the item parameter estimates of the LL-CRM or LL-GRM 

model. For continuous responses, they are: intercept/easiness, 

slope/discrimination, standard error of the slope and difficulty (delta) 

index.  For graded data, for each item they are the 



slope/discrimination, the threshold easiness estimates and difficulty 

(delta) index. 

GOF All available fit indices in the lavaan package are computed, allowing 

the user to decide which ones to choose. Kline (2015) suggests that, 

at a minimum, the reported indices should include the chi-square, the 

RMSEA, the CFI, and the SRMR. 

Scoring  For continuous data, the matrix structure includes: 

• Score point estimates corresponding to each respondent. 

• Amount of Information or PSD: The conditional amount of 

information provided by the scores (ML), or the Posterior 

Standard Deviations (EAP), depending on the type of scoring 

chosen by the user. 

• Conditional Reliability across the estimated trait levels. 

 

For graded data, the matrix structure includes: 

 

• Score point estimates corresponding to each respondent. 

• Confidence intervals around each point estimate. 

• Posterior standard deviations (PSD) : 

Reliability Conditional Reliability across the estimated trait levels 

 



 

-5. Illustrative example 

This example illustrates how to use UNIPOL-GC . The database used is 

located in the file named xsim10.dat. The data consists of 10 graded response items 

with a 1 to 4 response format (which means that there are 3 thresholds per item). It is 

a simulated dataset generated from the item parameters taken from a clinical scale. 

So, the LL-GRM is expected to fit rather well the data. 

Once you confirm that you are in the working directory containing the 

procedure codes, import the files xsim10.dat and nodos20log.dat, install the lavaan 

package (Rossell, 2012), and load the main function llgm.   

> xsim10 

    X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

1    2  2  1  1  1  1  1  2  1   1 

2    4  2  2  3  2  3  3  3  3   2 

3    1  1  1  1  1  1  1  1  1   1 

4    3  2  1  2  1  2  2  2  1   1 

5    2  2  1  2  4  1  2  1  3   2 

6    1  1  1  1  1  1  1  1  1   1 

 

The syntax used for model specification is similar to that used in the Lavaan 

package. In this example:  

> myModel <- "y =~ V1+V2+V3+V4+V5+V6+V7+V8+V9+V10 

              y~~y" 
 

The function usage requires specifying the database to work with, the type (whether 

items are treated as continuous or graded response), the desired estimator, and the 

node matrix. 

> llgm(data=xsim10, type=”graded”, model=myModel, estimator = “ULSMV”, 

nodos=nodos20log) 



 

 

1. Calibration: Item parameter estimates 

$Parameters 

$Parameters$Easiness 

            [,1]       [,2]        [,3] 

 [1,] 0.49221802 0.10490431 0.036543157 

 [2,] 0.45281906 0.08887817 0.031649763 

 [3,] 0.09169814 0.04290653 0.018983891 

 [4,] 0.13416817 0.02555901 0.007358044 

 [5,] 0.44887443 0.25245119 0.106504193 

 [6,] 0.22749598 0.01118984 0.001804949 

 [7,] 0.39165895 0.03403931 0.009490385 

 [8,] 0.13582820 0.02330209 0.003707336 

 [9,] 0.17946497 0.14352890 0.016511512 

[10,] 0.42372361 0.10211071 0.043301028 

 

$Parameters$DELTA 

          [,1]      [,2]      [,3] 

 [1,] 1.827734  6.809428 16.701940 

 [2,] 1.766353  5.686707 11.936323 

 [3,] 7.080162 13.190114 25.725367 

 [4,] 2.827046  6.666498 12.696527 

 [5,] 2.201585  3.881416  9.083712 

 [6,] 1.899737  7.009023 15.455140 

 [7,] 1.737951  7.338413 15.583797 

 [8,] 2.447951  5.396680 12.306420 

 [9,] 2.518006  2.839391  9.080482 

[10,] 2.793555 15.330072 42.784801 

 

$Parameters$Slope 

      items         y 

 [1,]     1 1.1753621 

 [2,]     2 1.3925811 

 [3,]     3 1.2206904 

 [4,]     4 1.9328320 

 [5,]     5 1.0149958 

 [6,]     6 2.3072891 

 [7,]     7 1.6959516 

 [8,]     8 2.2299489 

 [9,]     9 1.8601363 

[10,]    10 0.8358429 

 



The set of item parameter estimates above must be interpretated jointly to get a 

picture on how the items function (see figure 1). Furthermore, it is useful to note that 

the lognormal (0,1) distribution has a mean of 1.65 and a standard deviation of 2.16. 

Finally, it should be taken that the slope/discrimination values are in the same scale 

as in the conventional GRM. So, values above, say 1.5 indicate a high discriminating 

power (e.g. Reise & Moore, 2012 and Reise et al., 2021).  

With this information, let us take a look at two items with different functioning. Item 

3 is both highly difficult and fairly high discriminating. To establish the first feature, 

note that the row of the 3 easiness estimates for this item contains very low values, 

which means that most of the respondents no longer even pass the first threshold (in 

other words, they obtain the lowest 1 item score). Furthermore, the trait level that is 

required to have a 50% chance of scoring at least in the second category (i.e. the first 

delta value corresponding to this item) is 7.08 that is, almost two and a half standard 

deviations above the mean in the trait scale. The third delta estimate (25.72) means 

that, scoring in the highest 4 category requires an improvably high trait level.  

Turning now to the discrimination, the slope estimate for this item is 1.22, and 

indicates that this item is fairly discriminating, so that it will measure accurately but 

only in a narrow range of trait values.  

Consider now, a more balanced, “progressive” item: item 5. Given the easiness and 

location parameters, it follows that, to respond in the second category or above in 

this item does not require an exaggeratedly high trait level. Furthermore, reaching 

higher categories becomes progressively more difficult, as it should be. However, 

there are no abrupt jumps here, and a 50% chance of scoring in the highest category 

requires a trait standing of 9.08 (3.4 deviations above the mean). High, but not 

exaggeratedly high in a skewed distribution with a long right tail. Finally, the 



discriminating power of this item is medium, which suggests that the item will 

provide acceptably accurate measurement across a wider range of trait values than 

item 3.     

 

2. Calibration: Goodness of fit results 

$GOF 

               npar                fmin               chisq  

             40.000               0.010              20.916  

                 df              pvalue      baseline.chisq  

             35.000                  NA           20334.979  

        baseline.df     baseline.pvalue                 cfi  

             45.000                  NA               1.000  

                tli                nnfi                 rfi  

              1.001               1.001               0.999  

                nfi                pnfi                 ifi  

              0.999               0.777               1.001  

                rni               rmsea      rmsea.ci.lower  

              1.001               0.000               0.000  

     rmsea.ci.upper        rmsea.pvalue                 rmr  

              0.000               1.000               0.018  

         rmr_nomean                srmr        srmr_bentler  

              0.020               0.020               0.018  

srmr_bentler_nomean                crmr         crmr_nomean  

              0.020               0.020               0.022  

         srmr_mplus   srmr_mplus_nomean               cn_05  

              0.018               0.020            2379.625  

              cn_01                 gfi                agfi  

           2739.759               1.000               1.000  

               pgfi                 mfi  

              0.467               1.007  

 

No surprises here. Because the simulated data conforms to the model, the fit is near 

perfect, as it should be. Note that the chi-square value (20.916) is even below the 

number of degrees of freedom (35; its expected value). 

3. Scoring  

$Scoring 

            th       th_li      th_ls        se 



1    1.6007831  0.90543280  2.2961334 0.4214244 

2    7.1817827  4.61971219  9.7438532 1.5527700 

3    0.5105522  0.02836635  0.9927381 0.2922339 

4    2.9736238  1.83875288  4.1084947 0.6878005 

5    2.7733952  1.68401275  3.8627777 0.6602318 

6    0.5105522  0.02836635  0.9927381 0.2922339 

 

4. Conditional reliability across trait levels  

$Reliability 

   [1] 0.9477651 0.2908544 0.9748821 0.8608619 0.8717923 0.9748822 

   [7] 0.9748821 0.9525447 0.5875677 0.2826749 0.9748821 0.2690378 

  [13] 0.9452443 0.9748821 0.9374147 0.9636962 0.9748821 0.7124820 

  [19] 0.6400821 0.7759079 0.8145764 0.9748821 0.8691860 0.6183935 

  [25] 0.9518936 0.8548106 0.9087942 0.9748821 0.9636962 0.9630087 

  [31] 0.9223169 0.9748821 0.9659177 0.9748821 0.9748821 0.7399622 

 

 

  

 

A joint interpretation (point estimates and conditional reliabilities) is also recommended 

here, and we shall interpret the scoring results of the first two participants. The point 

estimate of the first respondent (1.600) is below the 1.65 trait mean, and, at low trait 

values the LL-GRM is expected to measure with more accuracy. So, as expected, the 

accompanying reliability estimate (0.974) is very high, which means that the confidence 

interval around the trait estimate for this individual is relatively narrow. 

The second respondent has a trait point estimate well above the trait mean (7.181) and 

so, the measure is expected to be rather inaccurate. Indeed, at this level, the reliability is 

very low (0.290) and so, the confidence interval around the point estimate is very wide, 

which evidences the uncertainty of the estimation. 

 



(Extension note). To get a whole picture of the scoring results, if the conditional 

reliabilities in (4) were plotted against the estimated trait scores in (3), the following 

conditional information function would be obtained: 

 

Clearly, the point estimates are accurate at low values, below the 1.65 mean, and 

marginally acceptable reliability (say above 0.70) can only be achieved up to one and a 

half deviation above the mean. For high levels, the scores are very imprecise, and that is 

how the model works: very accurate for differentiating between those individuals who 

have no trait manifestations and those who clearly do have them, but not sensitive 

enough to make finer differentiations between those with high levels. 
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