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1. Theoretical bases and features 

 

Ideally, the items in a scale intended to measure a single dimension of content (e.g. a trait) should be 

related only because of the influence of the common dimension they measure. In factor-analytic (FA) 

terms, this condition implies that, once the influence of the common factor has been partialled-out, the item 

responses cease to be related. When the items that make up a scale meet this condition, they are said to be 

locally independent. On the contrary, if some of the items continue to be related, they are said to be locally 

dependent. 

In our experience, strict compliance with the local independence condition is more the exception than 

the rule in personality and attitude measurement. Now, in principle, local dependencies among certain 

items are generally due to two main reasons (e.g. DeMars, 2020). First is multidimensionality: apart from 

measuring the “dominant” dimension, some of the items might also measure additional dimensions of 

content. The second reason is related specificities due to non-content or non-substantive causes, of which, 

the most commonly considered are: (a) repeated presentation of the same items, (b) content or wording 

similarities, (c) similarities in the evoked situation, and (d) context effects (Bandalos, 2021, DeMars, 2020, 

Ferrando & Morales-Vives, 2023). Please note that if item specificities are correlated due to any of these 

four causes, the sign of the correlation is expected to be positive, because the respondent will tend to 

answer the items in the same way beyond the influence of the common factor that underlies them. Local 

item dependencies due to correlated-specificities are the focus of the present program. Furthermore, the 

program is based on a FA background, in which the units of the analysis are the specific relations between 

pairs of items. A locally-dependent pair of items that shares specificities is known as a “doublet” in FA 

terminology. Finally, at this point, a warning note may be useful: In this guide we shall use the terms “local 

dependences”, “correlated residuals”, “correlated specificities”, or “doublets” indistinctly.    

The presence of correlated item specificities that are not taken into account may have negative 

consequences both when developing a scale or when measuring individuals by using an already existing 

one. So as to discuss these consequences, we shall use the FA background, and consider the process of 

scale development and usage as two-stage: Calibration and Scoring (McDonald, 1982). In the calibration 

stage, the structural items parameters (locations, discriminations/loadings, and error variances) are 
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estimated and goodness of model-data fit is assessed. In the scoring stage, provided that a well-fitting, 

strong, and replicable solution has been obtained, the item parameter estimates are taken as fixed and known 

and used as a basis for obtaining individual scores.   

At the calibration level, if local dependences exist and are left unmodeled, two main consequences 

are expected: unacceptable goodness of model-data fit results and biased parameter estimates (see Ferrando 

et al. 2023 for a thorough discussion). At present, however, and, as discussed below, procedures for fitting a 

FA solution which includes the residual correlations as additional parameters, are already available. When 

appropriately used, these “extended” solutions are expected to provide correct calibration results (including fit 

results) as well as additional information that serves as a basis for the procedures implemented in this package. 

However, they are less parsimonious and more potentially unstable and prone to capitalization on chance 

than the “simpler” solutions that assume full local independence.  

Turning now to the scoring stage. The package we present is intended to be used with raw (sum) scores 

based on an extended unidimensional FA solution of the type discussed above. The choice of raw scores is due 

to several reasons, mainly: (a) They are possibly the most widely used scoring procedure in applications 

because are easy to compute and interpret, (b) their results are more easily related to those from previous 

studies, (c) they tend to provide stable results under cross-validation, and (d) they remain unbiased if correlated 

specificities exist (see e.g. Ferrando et al. 2024 (submitted) or Raykov & Marcoulides, 2011). Even with these 

advantages (particularly the third one), raw scores based on a “correct” calibration solution might lead to 

misleading results if the correlated specificities are not taken into account also at the scoring stage. As a 

summary, if the scores are (wrongly) assumed to be based on a set of fully locally independent items, then, the 

amounts of accuracy and information they are expected to provide are overestimated (sometimes grossly so), 

which might have relevant consequences if the scores are used for individual assessment or for individual 

comparison purposes. Put it in another way: the presence of correlated specificities makes the scores less 

reliable and informative than they would be if the items were locally independent (Yen, 1993). Unfortunately, 

in our experience, the reported reliability and information estimates in applications are almost always 

“optimistically” obtained by assuming full local independence among items. Hopefully, the use of the package 

we propose can help improve this situation.  
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1-1. Features implemented in SINRELEF-LD 

 

In this section we shall only provide a conceptual summary of the indices and procedures implemented 

in the program. Technical details are provided in Ferrando, Navarro-Gonzalez, & Morales-Vives, (2024) to 

which the interested reader is referred. 

All the procedures available in SINRELEF-LD are based on two complementary measures of score 

accuracy: Information and Reliability. As for the first measure, if the raw scores are considered as estimators 

of the common factor the test intends to measure, then, the amount of information a raw score provides is 

inversely proportional to the squared standard error of measurement, and so, to the width of the confidence 

interval for estimating the ‘true’ trait level from this score. The amount of information can also be interpreted 

as a signal/noise ratio: it goes from 0 to infinity, and indicates how many times the common variance of the 

‘true’ trait levels is larger than the error variance in the population of interest. 

The coefficient of reliability considered in the program is defined as the (predicted) squared correlation 

between the raw scores and the ‘true’ trait levels. From this definition, it follows that this coefficient is the 

omega reliability coefficient when correlated residuals exist (Bollen, 1989).  

The ‘key’ feature of the proposal is that it computes: (a) the correct information and reliability estimates 

that take into account the local dependences, and also, (b) the corresponding estimates that would have been 

obtained if the items analyzed had been all locally independent. The comparison between both sets of 

estimates gives an idea of the loss of information and reliability that is due to the presence of correlated 

residuals. To enhance interpretability, we have also proposed a relative efficiency measure, which is the ratio 

between (a) the correct amount of information estimated by considering the local dependences and (b) the 

amount of expected information that would have been obtained if the items had been all locally independent. 

So, a relative efficiency of 0.70 means that the presence of correlated residuals makes the information 

provided by the raw scores only 70% of the information that the scores would have provided if the items had 

been all locally independent. 
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So as to appraise why the reliability and information indices complement each other, and also, how all 

the results so far summarized are interpreted, we shall consider a numerical example. Suppose that the correct 

reliability (omega) estimate for the scale scores that correctly accounts for the presence of doublets is 

ωLD=0.88. Now, suppose that the expected reliability estimate if all the items were locally independent is   

ωLI=0.92. Clearly, if the items were assumed to be locally independent, the reliability would be overestimated. 

However, the loss of accuracy due to the local dependences does not seem too great either. 

If the differences above are quantified in information terms, however, the picture changes considerably. 

The information estimates corresponding to the reliability estimates above are now:  ILD=7.33 and ILI=11.50, 

which seems a substantial difference!. The relative efficiency is then: RELD=7.33/11.50=0.64. So, the 

information provided by the scores in this item set that contains local dependencies is only 64% of the 

information that could be attained if these items were all locally independent. 

The reason why the information provides a more realistic picture of the loss of accuracy is because this 

measure is not bounded above. In contrast the reliability is bounded above by 1. So, as we approach one, the 

reliability estimates are compressed and the differences among them tend to be minimized. 

So far, we have discussed a series of indicators intended for the raw scores based on the entire set of 

items. However, as described below, SINRELEF-LD also provides indices at the bivariate level and on an 

item-by-item basis.  

We shall describe now the bivariate indicators. As discussed below, the input of the programs requires 

the user to specify the pairs of items that are locally dependent and also the residual correlations corresponding 

to each pair. With this information, the program can obtain the indices: ILD, ILI, and RELD for each specified 

doublet. This information is expected to be highly relevant for item selection purposes, as illustrated in the 

example below. 

At the item-by-item level, finally, SINRELEF-LD provides, for each item, the familiar reliability 

estimate that would be expected if this item was deleted. It will also provide the expected relative change in 

information if this item was deleted. To fix ideas, we shall return to our numerical illustration above. Recall 

that, for the raw scores based on the entire item set ωLD=0.88 and  ILD=7.33. Suppose now that, if a given item, 



 7 

say j, was deleted, the reliability estimate would be expected to drop to ωLD-j=0.86. In information terms, the 

drop would then be:  ILD-j=6.14. Finally, the relative change of information would be: (6.14-7.33)/7.33=-0.16, 

i.e., other things equal, an information loss of 16% would be expected if this item was deleted. Now, can we 

afford to remove this item?. The reader familiar with statistics will likely respond that we must first determine 

if these differences are significant, and she would be right. So, to address this point, SINRELEF-LD provides 

confidence intervals for the reported estimates. Again, the reader is referred to Ferrando et al. (2024) for 

technical details. 

So far, we have summarized all the indices the program provides, and have organized them at three 

levels: total-score, bivariate, and item-by item. However, SINRELEF-LD is even more comprehensive, and 

considers to alternative modeling approaches from which the items may have been calibrated. The first 

modeling is linear FA, which, in calibration terms, means that the items have been calibrated by assuming that 

their scores are (approximately) continuous and unbounded. The second modeling is non-linear factor analysis 

based on an Underlying Variables Approach (UVA). In calibration terms, this second choice means that the 

item scores are treated as ordered-categorical variables. For a thorough discussion of this topic, which (a) is 

relatively non-technical and (b) focuses on the item calibration process, the reader is referred to Ferrando & 

Lorenzo-Seva (2014). 

In closing, Table 1 summarizes the features implemented in SINRELEF-LD 

 

Table 1 

Features provided by SINRELEF-LD at each different level 

 

 Feature Overall scores Bivariate Item-by-item 

Local 

dependency 

Information ILD ILD ILD-j 

Reliability ωLD  ωLD-j 

Relative efficiency RELD RELD RELD 

Local 

independency 

Information ILI   

Reliability ωLI   
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2. Installation and setup 

 

The proposal so far discussed has been implemented in an R package called SINRELEF.LD 

(Information, Reliability, & Relative efficiency under Local Dependences). SINRELEF.LD has been 

developed in R Version 4.0.2 and runs with R versions more recent than 3.5.0. R program is available 

through their website (https://cran.r-project.org), and it has versions for Windows, macOS and Linux 

distributions. 

SINRELEF.LD package can be downloaded manually from CRAN repository at:  

https://cran.r-project.org/package=SINRELEF.LD 

Alternatively, the package can be downloaded using R console using the following syntax: 

> install.packages(“SINRELEF.LD”) 

Once the package is installed and loaded, the main function is available for the user, which will be 

described in the next section. 

 

3. Program Usage 1: Entering and importing data 

 

 

The program uses as input the calibration item estimates obtained from fitting extended 

unidimensional FA-solutions, in which the modeled local dependences are included. All the implemented 

procedures can be obtained from (a) linear FA solutions in which the items are treated as approximately 

continuous or (b) non-linear solutions in which the item scores are treated as ordered-categorical. 

 

The inputs required for SINRELEF.LD are described as: 

L: A vector containing the item loading estimates in the unidimensional factor-analytic (FA) 

solution. 

PSI: A vector containing the item residual standard deviations. 

THRES: A vector containing the item thresholds. (for the graded model only). 

https://cran.r-project.org/
https://cran.r-project.org/package=SINRELEF.LD
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ncat: Number of item response categories (for the graded model only). 

model: The factor-analytic model used for calibrating the item set, being 'linear' for the standard FA 

model or 'graded' for the non-linear ordered-categorical FA model. 

doublet_list: A vector containing the pairs of items with correlated specificities. 

cor_doublet: A vector containing the residual correlations corresponding to each pair, specified in 

doublet_list. 

N: The number of observations in the sample. 

CI: Choice of the confidence level for the intervals (90 or 95, 90 by default). 

display : Determines if the output will be displayed in the console, TRUE by default. If it is 

TRUE, the output is returned silently and if it is FALSE, the output is returned in the console. 

  

SINRELEF.LD was designed with three possible outputs in mind: Mplus, FACTOR and lavaan R 

package. Then, the inputs required for the function are fairly similar to the corresponding outputs in those 

statistical programs. 

Most precisely, for Mplus users, the procedure for obtaining the input data for SINRELEF.LD 

assessment is described as the following: 

For linear model, the user requires: a) the loadings vector from the estimate column of the model 

results; b) The residual variances of each variable, also found in model results and c) The residual 

correlations, which must be obtained from the “with” elements in the standardized model results.  

For the graded model, all the structural estimates must be obtained from the standardized model 

results. Then, the user requires: a) the loading vector from the standardized model results; b) the residual 

correlations obtained from the “with” elements in the standardized model results and c) the thresholds of 

each variable as shown in the output (the first column on the thresholds section, as a column vector). 

For FACTOR users, the process for obtaining the input data for SINRELEF.LD is very similar to 

the process of obtaining from an Mplus output. The main difference is that, since FACTOR work with 

correlation structures, continuous and graded solutions are standardized. Then, there is no need to provide 
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residual variances in both cases. Another difference is the formatting of the thresholds in the graded 

case. The user can provide the b values as a matrix, as presented in the FACTOR output, or re-arrange 

them for obtaining a single vector, like the Mplus scenario. 

Finally, for lavaan output, the user has to extract from the lavaan fitted model the same required 

inputs as previously described. For linear model: a) the loadings vector, b) residual variances and c) 

residual correlations. For the graded model: a) the loadings vector, b) residual correlations and c) the 

thresholds. 

 

 

4. Program Usage II: Syntax and output 

The R package includes only one main function, also called SINRELEF.LD, where the user has to 

provide the required inputs in order to implement the procedures aforementioned. 

SINRELEF.LD(L, PSI, THRES, ncat, model = 'linear', doublet_list, 

cor_doublet, N, CI = 90, display = TRUE) 

 

The function returns a R list, including all the output variables from 

the analysis. This list includes: 

omld: Omega reliability estimate taking in to account the item local 

dependences. 

omli: Omega reliability estimate if all the items were locally 

independent. 

relef: Score relative efficiency. 

relef_doublet: Doublet score relative efficiency. 

omega_del: Reliability estimate if the item was omitted. 

r_info_del: Relative information if the item was omitted. 
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5. Illustrative Example 

For this example, 400 subjects were randomly selected from those who participated in the study by 

Dueñas et al. (2022), which focused on the involvement of parents in the education of their sons and 

daughters. The participants were therefore parents with teenage children enrolled in high-school. These 

parents completed the Family Involvement Questionnaire-High School Version (FIQ-HS), but for this 

example we have only used their data in the Home-based activities subscale. The 17 items of this subscale, 

which have a Likert-type response format (rarely, sometimes, often and always), focus on parental 

activities outside of school that promote learning, such as talking to teenagers about careers and schooling 

and helping them with homework. We have chosen this subscale because it contains some redundant items, 

with a very similar wording or content (Dueñas et al., 2022). In fact, previous analyses already showed that 

the error terms of four pairs of items were substantially correlated. 

were either very similarly worded or tapped similar content. 

 A unidimensional solution, based on the nonlinear UVA FA model, and in which the four doublets 

referred to above were freely estimated, was fitted to this data by using robust ULS estimation as 

implemented in Mplus software. Goodness-of-fit results were acceptable: RMSEA and 90% C.I.= 0.057 

(0.049;0.067); CFI=0.91; GFI=0.95. 

 The obtained loading vector (LAM) was the following: 

Item Loading 

Y1 .367 

Y2 .507 

Y3 .646 

Y4 .590 

Y5 .679 

Y6 .714 

Y7 .619 

Y8 .670 

Y9 .538 
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Y10 .745 

Y11 .560 

Y12 .372 

Y13 .356 

Y14 .549 

Y15 .709 

Y16 .583 

Y17 .631 

 

The pairs of items with correlated specificities (doublets) were: 3-10, 12-13, 14-16 and 11-15; these 

should be provided as a numerical vector, containing all the pairs of items: c(3, 10, 12, 13, 14, 16). 

The correlations between doublets were: 

Pair of items r 

Y3 – Y10 .666 

Y12 – Y13 .687 

Y14 – Y16 .439 

Y11 – Y15 .333 

 

These correlations also should be provided as a numeric vector: c(.666, .687, .439, .333). 

Finally, the thresholds (thres) should be provided as obtained on Mplus matrix (vertical vector): 

Thresholds Loading 

Y1$1 -0.845 

Y1$2 -0.313 

Y1$3 0.388 

Y1$4 0.923 

Y2$1 -0.904 

Y2$2 -0.298 
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Y2$3 0.353 

Y2$4 0.946 

Y3$1 -0.962 

Y3$2 -0.350 

Y3$3 0.303 

Y3$4 0.912 

Y4$1 -0.834 

Y4$2 -0.230 

Y4$3 0.434 

Y4$4 1.024 

Y5$1 -0.923 

Y5$2 -0.372 

Y5$3 0.380 

Y5$4 0.958 

Y6$1 -0.935 

Y6$2 -0.340 

Y6$3 0.342 

Y6$4 0.970 

Y7$1 -0.915 

Y7$2 -0.335 

Y7$3 0.364 

Y7$4 0.904 

Y8$1 -1.049 

Y8$2 -0.443 

Y8$3 0.353 

Y8$4 0.915 

Y9$1 -1.089 

Y9$2 -0.385 

Y9$3 0.337 
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Y9$4 1.049 

Y10$1 -0.974 

Y10$2 -0.321 

Y10$3 0.364 

Y10$4 0.871 

 

The thresholds should also be provided as a numeric vector. c(-.845, -.313, .388, …) 

 

With this information, the input for running the program is: 

SINRELEF.LD(L = LAM, THRES = thres, ncat = 4, model = 'graded', 

doublet_list = c(3,10,12,13,14,16), cor_doublet =  c(.666,.687,.439,.333), N = 

400, CI = 90, display = TRUE) 

We shall now discuss a series of steps, based on the results provided by SINRELEF-LD, that will 

allow the user to identify redundant items, and to determine which items could be removed if necessary. 

The first step is to inspect the standardized loadings estimates already provided above in the Lavaan 

output. As can be seen, the most poorly functioning items, with the lowest standardized loadings, are 1,12, 

and 13, while the items with the highest estimates are 6,10, and 15. 

The second step is the comparison between the Omega reliability estimate in which the local 

dependencies are considered (Omega-LD), and the “ceiling” estimate if the items were locally independent 

(Omega-LI). As can be seen in Table 3, Omega-LI is higher than Omega-LD. In fact, only Omega-LD 

significantly differs from .80, which is the value usually considered as a minimum threshold (e.g. Raykov 

& Marcoulides, 2011), as indicated by the fact that its confidence interval does not include this value. 

Furthermore, the Score Relative efficiency suggest that there is a 19% loss of information/efficiency due to 

the modeled local dependences in the scale. 

 

Table 2 
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Omega reliability estimates under local independence and under local dependency, and score Relative 

efficiency 

Omega-LI Omega-LD Score Relative efficiency 

Value 90% CI Value 90% CI Value 90% CI 

.80 [.78, .82] .76 [.74, .79] .81 [.77, .85] 

 

The third step is inspecting the four specified salient doublets, whose Relative efficiencies are shown 

in Table 4. It should be considered that Doublet Relative efficiency values close to .50 indicate high 

redundancy, which means that neither item provides additional information beyond that provided by the other. 

In contrast, values closer to 1 would involve very little or no redundancy. According to the results, the more 

prominent doublets are the pairs 3-10 and 12-13, with relative efficiency values closer to .50. Therefore, these 

are the two doublets that will be taken into account in the next step, described below. 

 

Table 4 

Doublet Relative efficiencies and 90% confidence intervals  

Doublet RE 90% CI 

3-10 .63 [.52, .74] 

12-13 .58 [.47, .70] 

14-16 .67 [.61, .73] 

11-15 .76 [.70, .81] 

 

Finally, the fourth step is inspecting the Omega-LD reliability estimates, and the corresponding 

Relative information change, after removing one item at a time. In the case of scales with redundant items, 

the results of this step, in conjunction with the previous ones, makes it easier the decision of which items 

could be eliminated to reduce redundancy. Regarding the most prominent doublet (pair 12-13), both 

Omega-LD and Relative information change are the same if item 12 or item 13 are removed, as can be seen 

in Table 5. As both items (a) contribute with low amounts of information (both have low standardized 

loadings), and (b) are highly redundant, removing one or the other results in equivalent Relative information 

change, and there does not seem to be a compelling rationale for selecting one or the other as a candidate 

for deletion. Regarding the other salient doublet (pair 3-10), removing item 3 or 10 also results in similar 
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Omega-LD and relative information changes. However, as item 10 has a higher item relative efficiency, 

it seems preferable to remove item 3. 

 

 Table 5 

Omega reliability estimates under local dependency after deleting each item, and the Relative information 

change 

Item 
Omega-LD     

without the item 

Relative 

information change 

1 .76 -.04 

2 .75 -.06 

3 .77  .02 

4 .74 -.10 

5 .75 -.09 

6 .76 -.02 

7 .75 -.06 

8 .76 -.02 

9 .75 -.08 

10 .77  .01 

11 .75 -.07 

12 .78  .07 

13 .78  .07 

14 .76 -.03 

15 .75 -.09 

16 .75 -.05 

17 .74 -.10 

 

 

Considering these results, we decided to remove items 3 and 13. Table 6 shows the estimated results 

for the total scores of the remaining 15 items. The Omega-LD is again lower than the Omega-LI, but now 

the confidence intervals of both values include the .80 value. The Score Relative efficiency is higher than 

the one previously obtained for the 17 items. Therefore, removing items 3 and 13 has led to a reduction of 

the loss of information/efficiency due to the modeled local dependences in the scale 

 

Table 6 

Omega reliability estimates under local independence and under local dependency, and score Relative 

efficiency, after removing items 3 and 13 
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Omega-LI Omega-LD Score Relative efficiency 

Value 90% CI Value 90% CI Value 90% CI 

.80 [.78, .81] .78 [.77, .80] .90 [.89, .92] 
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