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IMINCE: an unrestricted factor-analysis-based program for assessing measurement invariance

Abstract

This paper describes a Windows program for analyzing measurement invariance in two different

populations. Factor Analysis is a common way of assessing measurement invariance, and

restricted factor analysis is nowadays the most popular method. However, applied researchers

have usually found that the theoretical advantages of restricted factor analysis do not always

apply in practical situations. For example, when the size of the participants sample is large, as

happens in Internet-based questionnaires, the available software for restricted factor analysis

might fail to converge to a solution. Our program is based on unrestricted factor analysis and

considers the three parameters that define factor invariance: diff iculties, discriminations and

residual variances. The statistical significance of the tests to evaluate invariance is obtained using

Bootstrap resampling procedures. A real example demonstrates the usefulness of the program.
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IMINCE: an unrestricted factor-analysis-based program for assessing measurement invariance

When we compare members of identifiable groups of individuals for their trait levels, we

must assume that the item and test scores that measure the traits have the same meaning in each

group. Put more formally, this assumption means that the scores earned by members of different

groups are assumed to be on the same measurement scale (Drasgow, 1984). If this assumption is

met, the item and test scores are comparable, and the test has ‘measurement invariance’ across

the groups. According to the Standards for Educational and Psychological Testing (1999, part

II), the assessment of measurement invariance is criti cal to sound testing practice, and so, much

discussion and research has been devoted to this topic (see e.g. Reise, Widaman and Pugh, 1993).

Factor Analysis (FA) is one of the most common ways of assessing measurement

invariance. The conventional FA approach for checking this issue involves comparing the

matrices of item-factor (or test-factor) regression weights of the different groups (see e.g.

Jöreskog, 1971). However, this procedure only addresses one aspect of invariance. The general

FA model assumes that the regression of an item (or test) score on the factor depends on three

parameters: (1) the intercept (i.e. diff iculty); (2) the regression weight or factor loading

(discrimination); and (3) the residual variance. Strictly speaking, therefore, for two items (or test)

scores from two different groups to be comparable, the intercepts, the factor loadings and the

residual variances of this item (or test) must be invariant in both groups. Meredith (1993) calls

this condition ‘strict factorial invariance’ . Following Meredith’s terminology, invariance of the

factor loadings would be ‘partial factorial invariance’ , whereas invariance in both the intercepts

and factor loadings would be ‘strong factorial invariance’ .

Historically, the FA assessment of measurement invariance has been addressed from the

unrestricted (exploratory) FA model. However, according to Reise et al. (1993), the restricted

(confirmatory) FA model is more often used nowadays. Restricted FA has important theoretical

advantages over unrestricted FA, mainly because: (1) it specifies a structural model which can be

rigorously tested, and (2) by choosing a suitable baseline model, we can assess different forms of

measurement invariance (partial, strong and strict) by means of hierarchical tests.
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Applied researchers, however, have found that the theoretical advantages of restricted FA

do not always apply in practical cases. For example, the formal tests of f it used in this model rely

on assumptions that are diff icult or impossible to fulfil when the variables to be analyzed are

item scores (e.g. the assumption that the variables are continuous-unbounded). Furthermore, the

standard restricted model assumes that most of the variables are factorially pure (i.e. they only

load on one factor and have zero loading values in the remaining factors). In real applications,

however, the items tend to have nontrivial secondary loadings on other factors. As some authors

noted (Church and Burke, 1994; McCrae, Zonderman, Costa, Bond and Pauonen, 1996),

unrestricted FA-based procedures might be more appropriate than the restricted FA approach in

most real applications, especially in large multidimensional solutions that do not approach very

simple structures. In addition, when the size of the studied sample is large, the available software

for restricted FA might fail to converge to a solution. Large participant samples are usually

obtained, for example, when it is obtained in Internet- based questionnaires (see, for example,

Pasveer and Ell rad, 1998; Buchanan and Smith, 1999; Joinson, 1999).

Because the conventional unrestricted FA approach is mainly descriptive, an important

drawback of this model is that decisions are based on arbitrary rules of thumb. To overcome this,

several more rigorous procedures have been proposed for assessing item (or test) invariance

when an unrestricted FA approach is used. Some of these procedures are inferential and provide

standard errors and test statistics, which gives more information and eliminates arbitrariness.

However, the relevant procedures are scattered among several journals and, in general, there is no

commercial software that implements such procedures (the authors of these procedures usually

used ad-hoc routines). Furthermore, all the procedures we revised were only concerned with

partial invariance. For these reasons we thought that applied researchers might find useful an

unrestricted FA-based general program that allows them to assess the different forms of

invariance (partial, strong and strict), and that incorporates a variety of inferential procedures

which are not available in commercial programs.

Procedures implemented in IMINCE

IMINCE (an acronym of Item Measurement INvarianCE) is a program written in Visual C

6.0, and is designed to analyze measurement invariance in two populations. Although the
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program is particularly suitable for analyses of item scores (either binary or Likert), it can also

analyze sums of item scores (parcels) and sets of test scores. In addition, IMINCE is a general

purpose program that can be used with any two-group comparison using a Cattell/Cli ff- type

Procrustes rotation to analyze whole scales. Specifically, the following forms of invariance can

be assessed by IMINCE:

a) Invariance of diff iculties.

The program tests the general hypothesis that the vector of variable means is the same in

the two populations to be compared. This is done using Hotelli ng’s T-square and the

corresponding F-ratio. IMINCE also tests the mean differences variable by variable using the

univariate t-test. Because the comparisons usually involve large samples, the sizes of the

univariate effect (Cohens d’) are also reported.

b) Invariance of discriminations (partial invariance).

The discrimination indexes (factor loadings) are computed from the covariance (or the

correlation) matrix using three optional methods: Principal Component Analysis, Unweighted

Least Squares factor analysis and Unrestricted Maximum Likelihood factor analysis. When the

model considers more than one factor (or component), the solution is rotated to show simple

structure using Normalized Varimax (Kaiser, 1958) to help the substantive interpretation of the

factor solution, and Procrustes (Cli ff , 1966) to allow congruence among samples. To test

invariance of discrimination indexes, three kinds of tests are implemented in IMINCE: factor

congruence, factor discrepancy and approximate confidence intervals for factor loadings. To

estimate the discrimination indexes in categorical data, the program allows the so-called

‘heuristic approach’ . This approach consists of (1) computing the matrix of polychoric

correlations between categorical items (tetrachoric correlations in the binary case), and (2)

analyzing this matrix by Unweighted Least Squares factor analysis. This approach is simple,

deals with large numbers of items and gives similar results to the more theoretically correct

approach.
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Chan, Ho, Leung, Chan & Yung (1999) proposed a Bootstrap method to evaluate factor

invariance in terms of congruence of variables, factors and the overall l oading matrix. The

method consists of f ive steps: (1) one sample is taken as the target and one as the replication; (2)

the factor solution from the replication sample is rotated against the target using orthogonal

Procrustes rotation (Cli ff , 1966); (3) empirical congruence indexes between samples are

calculated; (4) criti cal values at α are obtained by Bootstrap resampling; and (5), the observed

congruence indices are compared to the criti cal values at α, and considered as non-statistically

significant if they are smaller than the criti cal value.

Discrepancy of variables, factors and overall l oading matrices are evaluated using a similar

method. However, the index is based on least-squares measures of f it. In our program, we

generalized the overall i ndex proposed by Raykov & Little (1999), so that it is also used for the

variables and the factors (as Chang et al., 1999, did for the congruence index). The discrepancy

indexes are compared to the criti cal values at α, and considered as non-statistically significant if

they are larger than the criti cal value.

At the variable level IMINCE also computes approximate confidence intervals for factor

loadings. These are bias-corrected percentile intervals obtained from a Bootstrap resampling

process (for details see Lambert, Wildt and Durand, 1991). Non-overlapping confidence intervals

suggest that a particular variable as a measure of a given factor is not invariant over the two

populations of interest.

To compute all the indexes, the user must determine the number of Bootstrap replications

from the [500; 5,000] range, and can decide between a 90% or a 95% critical value. It must be

noted that usually 1,000 samples are usually recommended in Bootstrap methods (e.g., Efron &

Tibshiriani, 1993).

c) Invariance of residual variances.

This form of invariance is assessed variable by variable using bias-corrected percentile

intervals obtained from a Bootstrap resampling process. Bootstrap resamples are also drawn from
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the [500; 5,000] range, and either 90% or 95% approximate confidence intervals are computed.

Nonoverlapping intervals suggest that the residual variances of a particular variable are not

invariant over the populations that are compared.

Input and Output

The input and output of IMINCE is ill ustrated using an empirical example. This is a 10-

item Spanish anxiety questionnaire developed by us that uses a 5-point Likert format. The

questionnaire was administered to a sample of 707 women and a second sample of 335 men. We

aimed to assess the item measurement invariance in the corresponding populations. A model of

two factors was expected, and the largest sample was taken as the target sample.

The input consists of two ASCII format files containing participants’ scores, the number of

participants in each sample, and the number of factors expected in the population. IMINCE

default configuration consists of Unweighted Least Squares factor analysis of the covariance

matrices, 1,000 Bootstrap samples, and 95% approximate confidence intervals. We used

Principal Component Analysis of the covariance matrices and 5,000 Bootstrap samples.

The Output consists of (a) item diff iculties, item discriminations and item residual

variances for each sample, and (b) the overall , factor and item fit indices described above. Even

if the default configuration defines a detailed output, the user can configure the statistics and

indices to be reported, that is, stored in the ASCII format file “OUPUT.TXT”. The main results

are shown in Tables 1, 2 and 3:

a) Invariance of item diff iculties: Hotelli ng’s T-square and univariate t-tests suggest significant

differences (see Table 1). However, Cohens d’ statistic, which is perhaps more appropriate

because the comparisons involved large samples, suggests that there are no substantial

differences between populations.

[PLEASE INCLUDE TABLE 1 AROUND HERE]

b) Invariance of item discriminations: the approximate confidence intervals for factor loadings

show overlapping for all the loadings between the populations. However, at the item level

there are significant differences in the congruence coeff icient of item 1 and in the discrepancy

coeff icient of item 8 (see Table 2). Because of these significant differences at the item level,
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there are also significant differences in the overall congruence and discrepancy indices.

[PLEASE INCLUDE TABLE 2 AROUND HERE]

c) Invariance of residual variances: the overlapping intervals of all it ems suggest that the

residual variances of items are invariant over the populations compared (see Table 3).

[PLEASE INCLUDE TABLE 3 AROUND HERE]

In a second analysis, we omitted items 1 and 8. Without these two items, IMINCE reported

perfect invariance of item diff iculties, discriminations and variances. The conclusion of our study

was strict factor invariance for items 2, 3, 4, 5, 6, 7, 9 and 10; and no factor invariance for items

1 and 8.

Limitations

We implemented IMINCE for a PC computer using the WINDOWS 95/98/NT operative

system. The program uses all the extended RAM memory available in the computer, and the

matrices are defined during the execution of the program. This means that there is no clear limit to

the maximum number of items that can be analyzed: this depends on the characteristics of the

computer that carries out the analyses. The main limitation of IMINCE is the time needed for

computing, especially when a larger number of Bootstrap samples is defined. The example in this

paper, which in fact involved large samples, was performed on a Pentium III at 866Mhz and

64MB RAM computer. For 5,000 Bootstrap samples, IMINCE needed six minutes and fifteen

seconds. However, this time was thirty-nine seconds for 500 Bootstrap samples. When

computing polychoric correlation matrices with the standard computers available, the analysis

can take a really long time. For 5,000 Bootstrap samples and polychoric correlations, IMINCE

needed two hours and twenty-three minutes. In the not-too-distant future, most computers will be

able to deal easily with this analysis.

Program availabilit y

A copy of the software, a demo, and a short manual can be obtained at no charge by e-mail

(uls@fcep.urv.es).
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Table 1
Item diff iculties, univariate t-tests and Cohen’s d statistic

Item
number

Target
sample

Replication
sample

Student's t Effect Size
(Cohens d’s)

1 3.42 3.13 4.51** 0.30
2 3.42 3.04 5.25** 0.35
3 3.84 3.82 0.28 0.02
4 2.45 2.42 0.40 0.03
5 2.06 2.12 −0.85 −0.06
6 2.55 2.68 −1.87 −0.12
7 3.07 2.78 3.09** 0.20
8 2.71 2.86 −1.94 −0.13
9 2.88 2.94 −0.72 −0.05
10 2.78 2.73 0.66 0.04

** Significant differences
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Table 2

Overall fit congruence and discrepancy indices per item

Item
number Congruence values Discrepancy values

Observed Critical value
at alpha = 0.05

Observed Critical value at
alpha = 0.05

1 0.840** 0.872 0.049 0.055
2 0.607 0.582 0.070 0.092
3 0.993 0.979 0.005 0.026
4 0.991 0.987 0.012 0.025
5 0.974 0.959 0.036 0.058
6 0.992 0.989 0.014 0.020
7 0.998 0.995 0.017 0.035
8 0.992 0.986 0.035** 0.027
9 0.994 0.987 0.009 0.031
10 0.999 0.957 0.018 0.060

** Significant differences
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Table 3

Bias-corrected percentile intervals of residual variances per item

Item number Target sample Replication sample

1 (0.621; 0.789) (0.764; 1.085)
2 (0.943; 1.179) (0.948; 1.246)
3 (0.478; 0.624) (0.476; 0.679)
4 (0.395; 0.518) (0.462; 0.687)
5 (0.768; 0.994) (0.693; 1.113)
6 (0.379; 0.496) (0.360; 0.554)
7 (0.087; 0.695) (0.175; 0.680)
8 (0.460; 0.707) (0.376; 0.680)
9 (0.458; 0.911) (0.467; 0.976)
10 (0.863; 1.156) (0.740; 1.070)


