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1. THEORETICAL BASES 
 

Typical-response (personality and attitude) measures intended to measure a single 

dimension, are generally fitted using conventional factor-analytic (FA) models, or FA-

related item response theory (IRT) models, such as the graded-response model (GRM) 

and the two-parameter model (2PM). In this type of modelling, the observed item 

response can be viewed as the outcome of an encounter between an item that has two 

characteristics: location/s and discrimination, and an individual that has a single 

characteristic: location or trait level. No individual feature is considered that can be viewed 

as equivalent to the item discriminating power. More technically, no ‘dual’ person 

discrimination parameter is considered in this type of models. 

“Item discrimination” is a term that has multiple meanings in item analysis 

(Ferrando, 2012). For the present purposes, however, we shall adopt the original 

Thurstonian view, based on the concept of item discriminal dispersion (IDD), or 

fluctuation around the item position on the trait continuum (Edwards & Thurstone, 1952). 

An item that is interpreted in the same way for all the respondents, or across hypothetical 

repeated presentations to the same respondent, has small IDD, which means that: (a) has a 

well-defined position on the trait continuum (small fluctuation); (b) is able to consistently 

differentiate between individuals with different trait levels; and so, (c) is an accurate and 

consistent indicator of this trait.      

The person counterpart of IDD, would be a parameter that models the fluctuation 

of the perceived trait level (i.e. person location) of this individual around its central 

value across the test items or hypothetical replications of the same item. This parameter 

has received different names in the literature, such as “person fluctuation” (Ferrando, 
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2007; Levine & Rubin, 1979; Lumsden, 1980), “person reliability” (Ferrando, 2004; 

Lumsden, 1977, 1978), or “slope of the person response function” (Trabin & Weiss, 

1983, Jackson, 1986), and determines the consistency of the response pattern of this 

individual in terms of sensitivity of his/her responses to the different item locations. In 

InDisc we denote this parameter as “individual discriminal dispersion” or “person 

discriminal dispersion” (PDD), which makes it clear that it is the person counterpart of 

the IDD. The same as in the item case, low PDD means high individual discrimination, 

thus, a highly discriminating individual will have a well-defined trait level with small 

PDD, and so, will respond with high consistency regarding the different item locations, 

leading to response patterns that approach Guttman patterns (Coombs, 1948, Ferrando, 

2004, 2013, Fiske, 1968). At the other end, an individual with low discrimination will 

have a poorly defined trait level, with high PDD, and so will be largely insensitive to 

the item locations and his/her response pattern will be almost at random. Both, evidence 

and literature review, suggests that individuals do indeed differ in the sensitivity of the 

responses they provide to personality and attitude questionnaires (Tellegen, 1988). So, 

dual models (see Fiske, 1968) in which both items and persons differ in terms of 

discriminating power seem to be the most plausible approach for fitting typical 

responses. 

Apart from its plausibility, assessing PDD is submitted to have both, substantive 

and practical interest. At the substantive level, conventional models have explored the 

interpretation of the IDD, and have related this characteristic mainly to the degree of 

item ambiguity, type of stem and average stem length (e.g. DeFleur & Catton, 1957, 

Ferrando, 2013, Lumsden, 1980, Taylor, 1977). As expected, the meaning of PDD has 

been far less studied, but it has been hypothesized to be related to the relevance and 

degree of clarity and strength with which the trait is internally organized in the 
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individual (Traitedness; e.g. Markus, 1977, Reise & Waller, 1993, Taylor, 1977, 

Tellegen, 1988). Evidence in this respect suggests that the PDD estimates can be 

effectively used to reflect traitedness (LaHuis et al. 2017, Reise & Waller, 1993). 

Finally, recent studies also suggest that PDD is related to general intelligence so that the 

more capable individuals tend to respond to personality questionnaires with smaller 

amounts of PDD (Escorial et al. 2019).  

At a more practical level, the PDD estimates provide additional information about 

the consistency of the respondent’s answering behaviour as well as the accuracy with 

which the trait location of this individual can be estimated. This information, in turn, 

can be of use in individual assessment, and has also been used in exploratory person-fit 

research (see Conijn et al., 2013).  Finally, the PDD estimates are expected to have a 

moderating role in validity assessment (Ferrando, 2004, 2013) mainly for two reasons. 

First, the person location estimates of the less discriminating individuals are less 

reliable, which means that attenuated validity estimates are expected in this population. 

Second, those individuals for whom the trait is relevant are expected to be more likely 

to display a stronger correspondence between trait self-description and external trait-

relevant variables (Markus, 1977, Paunonen, 1988).  

 

1.1 Models implemented in InDisc  

 

The models discussed in this section are “Dual Thurstonian Models” (DTMs) 

because (a) they include discrimination parameters for both items and individuals, and 

(b) these parameters are modelled using Thurstone’s concept of discriminal dispersion.  
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In his comprehensive presentation of DTMs, Ferrando (2019) considered three 

different models: The DTM for continuous responses (DTCRM), the DTM for graded 

responses (DTGRM) and the DTM for binary responses (DTBRM). However, the 

DTBRM is simply the particular case of the DTGRM when the number of ordered 

response categories reduces to two, with no other distinctive feature that the usual 0-1 

scoring typical in binary responses is replaced by the usual integer graded scoring (1-2 

in this case). For this reason, only the DTCRM and the DTGRM will be discussed here. 

Essentially, both models can be formulated as extended unidimensional factor-analytic 

models with an extra discrimination parameter for each individual. 

We shall start by defining the common features of both models. At the moment of 

answering item j, respondent i has a momentary trait (or perceived trait) value Ti 

whereas item j, has a momentary (perceived) location bj , both values defined on the 

continuum of the trait that is measured. This trait is denoted by θ, and is assumed to 

have zero mean and unit variance in the population. 

.; jjjiii bT εβωθ +=+=  (1) 

The distribution of Ti over the test items is assumed to be normal with mean θi and 

variance σ2
i, which are the parameters that characterize respondent i. θi is the central 

trait value, the single value that best characterizes the standing of this individual on the 

trait, while σ2
i is indeed the PDD of this individual. With regards to item j, the 

distribution of bj, over respondents is assumed to be normal, with mean βj, and variance 

σ2
εj. , where βj, can be interpreted as the conventional location of this item, while σ2

ε. is 

the IDD.  
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We shall first consider the DTCRM. Let Xij be the (approximately continuous) 

score of individual i in item j. For convenience, Xij is scaled to have values between 0 

and 1, which can be conveniently done with InDisc. The structural model for this score 

under the DTCRM is: 

)(. jijij bT50X −+= λ  (2) 

The conditional distribution of Xj for fixed θi and σ2
i is normal, with expectation: 

 

)(5.0),|( 2
jijiiijXE βθλσθ −+=  (3) 

The conditional expectation in (3) is a linear function of the weighted person-item 

distance λj(θi-βj). When θi>βj, the expected score is above the 0.5 response scale 

midpoint (i.e. 0.5), and when the person location matches the item location, the 

expected item score is the midpoint. So, as proposed above, βj can be interpreted as a 

standard IRT difficulty index: it is the point on the trait continuum that marks the 

transition from the tendency to disagree/not endorse the item to the tendency to 

agree/endorse. 

The conditional variance is given by: 

  

).(),|( 2222
jijiiijXVar εσσλσθ +=  (4) 

And clearly shows the role of the IDD and PDD in this model. Note that the 

expected score in (3) is the same regardless of the magnitude of these dispersions. 

However, the item and person dispersions determine the expected consistency of the 

responses. Thus, when both PDD and IDD are small, so is the conditional variance in 

(4) which means that the observed score will be close to the expected score.  
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We turn now to the DTGRM, which is obtained from the linear model so far 

discussed by using an Underlying-Variables Approach (UVA; Muthén, 1984). Consider 

now that the observed item score Xj is a categorical variable, and assume that there is a 

latent response variable Yj that underlies Xj, so that the following model holds for Yj  

)( jijij bTY −= α . (5) 

Model (5) is the same model as (2) without the midpoint intercept term and with the 

variance of Yj fixed to 1. This restriction is made for identification purposes, and means 

that the scale parameter λj is now a standardized loading αj.  

As is usual in the UVA, the relation between Yj and the observed score Xj is 

assumed to be a step function governed by a threshold mechanism. In InDisc we shall 

consider, for any ordered-categorical response (included the binary response), the 

integer-value scoring 1,2,…With this scoring, the step relation between Xj   and Yj is: 

 

YifcX

YifX
YifX

YifX

c <=

<≤=
<≤=

<=

−1

32

21

1

...
3
2
1

τ

ττ
ττ

τ

. (6) 

Where τk is a threshold and c is the number of response categories. From this modeling it 

follows the usual UVA result that the product-moment correlation between Yj and Yk is 

the polychoric correlation between Xj and Xk . 

The probability of scoring k in item j for fixed θi and σ2
i is now:  
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Where Φ is the c.d.f. of the standard normal distribution. To see how the 

DTGRM functions, consider first that the central person location θi determines the 

response category that has the greatest probability of being endorsed by respondent i. 

As for the role of the IDD and the PDD, the smaller they are, the greater the probability 

of endorsing this category is, and the smaller the probability of endorsing the remaining 

categories become. To provide an example that focuses only on the PDD, consider a 

respondent whose person location is between δj k-1 and δj k. As his/her PDD approaches 

zero, the probability of endorsing category k increases, whereas the probability of 

endorsing the remaining categories decreases. So, the process of responding of this 

individual becomes more deterministic. At the opposite extreme, as the PDD increases, 

the probability of responding in different categories becomes progressively more 

undifferentiated.      

In closing this section, we shall briefly discuss the relations between the models 

so far discussed, and the corresponding conventional models with no individual 

discrimination parameters. When the PDD is a constant for all the respondents, the 

DTCRM becomes the standard unidimensional linear FA model (this can be derived 

from equation 2; see Ferrando, 2012), whereas the DTGRM reduces to the normal-

ogive version of Samejima’s (1969) GRM (this result can be seen directly from 

equation 7). Thus, from the present framework, the standard existing models can be 
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viewed as the limiting case of the dual models fitted by InDisc when the amount of 

PDD is the same for all the respondents.    
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2. PRACTICAL REQUIREMENTS FOR FITTING THE 
MODELS 

 

For the two models available in InDisc, accurate measurement of the trait level has 

the same requirements as the corresponding standard model in which only this person 

parameter is estimated. So, even in the less informative case of binary items, acceptable 

trait estimates for all the respondents are expected to be achieved with relatively short tests 

of acceptable quality. Our position, however, goes in the same line as that of Emons et al. 

(2007): that even in well-designed tests, 20 is a safe minimal number of items for 

achieving accurate individual trait estimation. 

Obtaining accurate person discrimination estimates is far more demanding than 

obtaining accurate trait estimates. The amount of measurement error for the PDD estimates 

depends mostly on (a) the number of items, (b) the distance between the item and the 

person locations on the trait continuum, and (c) the quality (i.e. discrimination) of the 

items. Thus, for a given respondent with a certain trait level, individual discrimination 

can only be estimated accurately if there are enough items with good discrimination that 

are sufficiently distant from his/her trait location. At the overall level then, it follows 

that reliable estimation of the person discriminations for most of the respondents 

requires a test that is long enough and made up of items that have a wide dispersion of 

locations across the trait continuum and a relatively low amount of IDDs.  

Apart from the general determinants above, theoretical and empirical results, 

clearly suggests that the minimal requirements vary largely according to the model that 

is fitted to the data, and, in the case of the model for ordered-categorical responses, to 

the number of response categories. (see Ferrando, 2009). In favourable conditions:  item 

locations that are widely spread and evenly distributed around the mean trait level (zero 
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in the InDisc scaling), and that have acceptable discriminations, reasonable PDD 

estimates for all the sample respondents can be obtained from 15 items both from the 

continuous model and from the graded-response model with 5 or more response 

categories. In the case of binary responses, the 20-item recommendation is a safer 

minimum (Ferrando, 2004). We emphasize again that we are assuming items that vary 

widely in location when providing these minimal requirements. Accurate individual 

discrimination is plainly unfeasible in tests in which all of the items have similar 

locations, no matter how long is the test.  

Until more extensive simulation is carried out, our recommendations at present 

are the following. First, inspect the item means and item-total correlations using 

conventional analysis, and check whether they met the InDisc requirements. Second, 

check that (a) the chosen InDisc model fits the data better than the corresponding 

conventional model, and (b), the estimated reliability of the person discrimination 

estimates is acceptable both at the individual and at the marginal level. Section 4 

explains how to assess these two important points.     

We shall now discuss practical requirements for choosing between the DTCRM 

and the DTGRM. The simpler DTCRM assume the item scores to be continuous and 

unbounded, which is never the case with psychometric item responses (at most they are 

bounded and approximately continuous). The bounded nature of the item scores imply 

that (a) the item-trait relations are nonlinear rather than linear, and (b) the conditional 

distributions become more asymmetrical and with decreased variance toward the ends of 

the scale, whereas in equation (4) the conditional variance is assumed not to depend on the 

trait level. So, for ordered-categorical scores, the DTGRM is theoretically more 

appropriate than the DTCRM, and the latter must be always viewed as an approximation. 
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However, the DTCRM has also the advantages of its simplicity and robustness. A more in 

depth discussion is provided in Ferrando (2002), but we shall note here that in most 

practical applications in the personality domain based on items with 5 or more categories, 

the DTCRM works generally well. So, it is a recommended option when (a) the number of 

categories is 5 or more, and (b) the number of items is relatively short, thus leading to 

potentially unstable person estimates if the DTGRM is chosen.      
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3. ESTIMATION PROCEDURES 
 

For both the DTCRM and the DTGRM, InDisc uses a conventional two-stage 

conditioned estimation procedure (e.g. McDonald, 1982). In the first stage, (item 

calibration) the structural parameters of the chosen model are estimated. These parameters 

are: item locations, IDDs, and the average PDD in the population. In the second stage 

(scoring) estimates of the central level or person location (θi) and of the PDD (σi
2) are 

obtained for each individual. Model-data fit or model appropriateness is also assessed at 

both, the calibration and the scoring stages. 

The estimation procedures in InDisc have been chosen mainly for practical reasons. 

At the calibration stage, we wanted a simple and robust procedure that allow stable 

estimates to be obtained even in large item sets and not too large sample sizes. At the 

scoring stage, we wanted a procedure able to provide finite and plausible estimates for all 

the respondents in the sample under analysis. 

 

3.2 Item Calibration 
 

 Both the DTCRM and the DTGRM can be calibrated by fitting a unidimensional 

FA model, with additional identification restrictions, to the appropriate correlation 

matrix: Product-moment (DTCRM) or polychoric (DTGRM). In both cases, the 

standard FA output would provide the standardized loadings α and the corresponding 

standardized residual variances. Now, from the general assumptions above, the 

following result is obtained. 
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Result (8) means that the standardized loadings do not contain sufficient 

information to separately identify the average PDD and the IDDs. To achieve this 

identification, InDisc uses a scaling restriction based on a ‘marker’ item. The item with 

the largest loading (i.e. with the smallest IDD) is taken as a marker, and so, treated as if 

its IDD was zero. Then, relative to this scaling, the average PDD is estimated as 

)(ˆ
ˆ
ˆ1 2

max
2

(max)
2

iE σ
α
α

=
−

. (9) 

where is the largest estimated standardized loading. The remaining IDDs 

are obtained from equation (8). 

As a summary, the calibration procedures as implemented in InDisc are as 

follows. For the DTCRM, first, the unidimensional FA model is fitted to the inter-item 

product-moment correlation matrix, and estimated loadings and residual variances are 

obtained. Next, the item locations in (3) are obtained from the marginal means (see 

Ferrando, 2019 for details). Finally the IDDs and the average PDD are obtained by 

using the marker identification restriction in equation (9). 

 In the DTGRM case, the unidimensional FA model is fitted to the inter-item 

polychoric correlation matrix, and estimated loadings and residual variances are 

obtained. Next, the FA-based threshold estimates are reparameterized to location 

estimates (the δ’s in equation 7). Finally the IDDs and the average PDD are obtained by 

using the same procedure as in the DTCRM. 

The FA calibration procedure is the same for both models but based on the 

corresponding inter-item correlation matrix. The unidimensional FA model is fitted to 
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this matrix using the minimum-residual unweighted least squares (ULS) criterion as 

implemented in the “psych” R package (Revelle, 2018; see the “psych” guide in 

https://cran.r-project.org/web/packages/psych/psych.pdf for more details).  

  

3.2 Individual scoring 
 

The search for a scoring procedure that produces finite and plausible estimates for all 

respondents has led us to choose Bayes expected a posteriori (EAP, Bock & Mislevy, 

1982) score estimation for both models. EAP has also an additional advantage here: that 

the regression towards the mean or shrinkage phenomenon characteristic of Bayes 

estimation is towards an appropriate central value: the average PDD estimated as a 

structural parameter at the calibration stage. For both, the DTCRM and the DTGRM, 

details on EAP estimation of θ and σ2
i are provided in Ferrando (2019). 

 The most relevant information to be provided in this section is that concerning 

the prior distributions. In InDisc, the prior for θ is set as standard normal, and for σ2
i   is 

set as a scaled inverse χ2 distribution, a theoretically appropriate prior given that, in the 

InDisc modelling, the PDDs are variances (Novick & Jackson, 1974). With regards to 

this last prior, the most relevant practical problem is to determine the amount of 

weakness or diffuseness of the prior. A too weak or diffuse (i.e. uninformative) prior 

might lead to implausible or out of bound PDD estimates for some individuals, 

especially in the case of items with few categories and/or short tests. A too tight prior, 

on the other hand, would provide PDD estimates with very little variability and 

concentrated around the average PDD estimated at the calibration stage. The 

‘compromise’ choice taken in InDisc is to set the scale parameter and the degrees of 

freedom of the inverse chi-square distribution so that (a) the prior mean coincides with 

https://cran.r-project.org/web/packages/psych/psych.pdf
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the average PDD obtained at the calibration stage, and (b) the prior variance is 0.5. 

Extensive program checks suggest that this choice produces plausible estimates in most 

of the conditions expected to be found in practice. If, on the other hand, implausible 

results for some respondents are obtained with this prior, a tighter alternative prior will 

be used, with a scaling parameter of 4 and 6 degrees of freedom. This tighter prior will 

only be applied for the respondents from which plausible estimates cannot be obtained. 

If, once this tighter prior have been used, there still are some implausible results, an 

even tighter prior will be used, with a scaling parameter of 8 and 10 degrees of freedom 

for the affected respondents. In closing this section we note that for both, θ and σ2
i 

priors, InDisc uses as default rectangular quadrature in 30 equally spaced points (see 

Mislevy, 1986). However, the number of quadrature points can be modified at the user’s 

request. 
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4. ASSESSING MODEL APPROPRIATENESS 
 

Item calibration by ULS FA provides conventional measures of goodness of model-

data fit at the structural correlation level. In particular, of the ULS-derived goodness-of-fit 

indicators provided in the “psych” output, the InDisc output provides four: the chi-square 

statistic and corresponding degrees of freedom; the root mean square of the residuals 

(RMSR; a descriptive absolute index), The Tucker-Lewis or Non-Normed fit index (a 

comparative index relative to the null independence model), and the root mean squared 

error of approximation (RMSEA; an index of relative fit per degree of freedom).  

If the structural fit of the model is considered acceptable according to the measures 

above, it can be assumed that the unidimensional FA model fits well the inter-item 

correlation matrix, which is a necessary, but not sufficient condition for considering that 

the corresponding DTM is appropriate. In effect, the standard model and the DT model are 

indistinguishable at the implied-inter-item correlation level. So, if fit is acceptable at the 

calibration stage, what is needed for considering the DTM as appropriate is to further 

assess if there is non-negligible variation in the PDD estimates over respondents. 

Otherwise, the simpler standard model in which all respondents are assumed to be the 

same amount of PDD would have to be chosen according to the parsimony principle. 

The approach implemented in InDisc is based on a likelihood ratio (LR) statistic. 

For a single respondent i, let )ˆ,ˆ( 2
i

0
iL σθ be the value of the likelihood function evaluated 

by using the person location estimate that is obtained under the restriction that all the 

PDDs have a constant value (the estimate of this constant value is the mean of the PDDs 

obtained at the calibration stage according to equation 9). Now, let )ˆ,ˆ( 2
ii

1
iL σθ  be the 
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corresponding likelihood function value using both the person location and the PDD 

estimate. The LR statistic and the transformed value provided by InDisc are 

)ln(2;
)ˆ,ˆ(
)ˆ,ˆ(

21

20

ii
iii

ii
i s

L
L

Λ−==Λ
σθ
σθ

. (10) 

The LR statistic Λi is a descriptive normed index with values in the range 0-1. 

Values close to 0 indicate that the DTM provides a substantially better fit than the 

corresponding standard model. As for si, under very restrictive conditions it could be 

considered to be a value randomly drawn from a χ2 distribution with one degree of 

freedom. And, by further assuming experimental independence between respondents, 

the sum Q=Σsi asymptotically approaches a χ2 distribution with N degrees of freedom. 

However, we do not propose Q as a rigorous and strict inferential statistic, but only as a 

useful reference for assessing whether the DTM fits better than its standard counterpart. 

In this spirit, Q values two or more times greater than N would clearly suggest that the 

DTM is more appropriate than the standard model. 

That there is non-negligible variation in the PDDs is of little practical interest if 

this characteristic cannot be estimate with reasonable accuracy for most of the 

individuals in the population of interest. For each individual, the InDisc output provides 

the point estimates of the trait level and the PDD as well as the corresponding posterior 

standard deviations (PSDs) which serve as standard errors (e.g. Bock & Mislevy, 1982) 

and the individual reliability estimates based on these standard errors. So, the magnitude 

of the PSD and corresponding reliability allows the practitioner to judge the accuracy of 

the estimates (both trait level and PDD) for the individual under scrutiny. Furthermore, 

a marginal reliability estimate can be obtained by averaging the squared PSDs in the 
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sample of N individuals (Brown & Croudace, 2015). In InDisc, this marginal reliability 

estimate is obtained as: 
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Expressions (11) differ from those provided in Ferrando (2019). They were chosen 

here because, of all the possible estimates of the marginal reliability, those obtained with 

(11) were the closest to the empirical reliabilities directly estimated by using a split-half 

schema. As for interpretation, acceptable marginal reliability would indicate that the 

characteristic of interest (trait level or PDD) can be measured with reasonable accuracy for 

most of the respondents belonging to the population of interest.  
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5. PROGRAM USAGE 
 

5.1 InDisc R package: Techical details 
 

InDisc was developed in R 3.6.1, and is distributed as an R package. The current 

version, which is available through CRAN, contains one main function that implements 

all the procedures described above. It runs with R versions more recent than 3.5.0,  and 

it is operational in any operational system that supports R (Windows, Linux and Mac 

OS). 

 

5.2 Program availability and installation 
 

The package is available through the CRAN website (https://CRAN.R-

project.org/package=InDisc), and can be downloaded directly from the CRAN website, 

and installed manually. Otherwise, the package can be installed as any other R package 

through the command line using: 

> install.packages("InDisc")  

 

5.3 Usage and input arguments 
 

The function usage is the following: 

> InDisc(SCO, nquad = 30, model = "linear", approp = FALSE, 

display = TRUE) 
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Where the description of the input arguments are: 

SCO The data matrix containing the item scores. 

nquad The number of quadrature points for EAP estimation (default is 30). 

model The model to be used: “graded” (DTGRM) or “linear” (DTCRM). 

approp Determines if the appropriateness indices will be computed and printed in 

the console (logical variable, FALSE by default). 

display Determines if the output will be displayed in the console (logical variable, 

TRUE by default). 

 

5.4 Output 
 

The output will be printed in the console if the argument display was TRUE, and 

it will look as follows: 

$INDIES 
            theta       PDD PSD (theta)  PSD (PDD)   th reli  PDD reli 
FAC -0.3536449769 0.5276088   0.1982579 0.25969195 0.9606938 0.8604710 
     0.8388829281 0.2751096   0.1764851 0.11729701 0.9688530 0.9679779 
    -0.5665837603 0.5309085   0.2022677 0.23957794 0.9590878 0.8787283 
    -0.5126518601 0.2693279   0.1733151 0.12141829 0.9699619 0.9657665 
     1.3975053292 0.3266656   0.1808566 0.15912717 0.9672909 0.9426106 
     1.4531437169 0.2554437   0.1736983 0.11075976 0.9698289 0.9713483 
     1.1486078686 0.3086771   0.1781839 0.15151937 0.9682505 0.9476867 
    -1.2574619814 0.4221989   0.1875729 0.22506741 0.9648164 0.8914269 
    -1.8535233446 0.2297871   0.1667344 0.10339718 0.9721996 0.9749386 
     1.2631254196 0.2726965   0.1713418 0.12756690 0.9706420 0.9623454 
      
[ reached getOption("max.print") -- omitted 90 rows ] 
 
$degrees_of_freedom 
[1] 560 
 
$Model_Chi_square 
[1] 844.8372 
 
$RMSR 
[1] 0.08384021 
 
$TLI 
[1] 0.7335781 
 
$RMSEA 
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[1] 0.09945507 
 
$EVARI 
[1] 0.5346372 
 
$reli_theta 
[1] 0.9589096 
 
$aver_r_theta 
[1] 0.9589096 
 
$reli_PDD 
[1] 0.8217937 
 
$aver_r_PDD 
[1] 0.8491271 
 
$LR_stat 
[1] 0.2079331 
 
$Q_Chi_square 
[1] 318.5465 

  

 

All the data will be stored in a data frame if the user introduces an output 

variable name before the function. On this data frame, the user can find all the indices as 

the following arguments: 

INDIES Matrix including the theta scores, the PDDs, the PSDs (theta), 

the PSDs (PDD) and the reliabilities for the theta scores and 

PDDs for each participant. 

degrees_of_freedom Degrees of freedom for the fitted model. 

Model_Chi_square Chi Square statistic for the fitted model. 

RMSR Root Mean Square of the Residuals. 

TLI Tucker Lewis Index of factorial reliability. 

RMSEA Root Mean Squared Error of Approximation. 

EVARI Average of the PDDs. 

reli_theta Marginal reliability of the trait estimates. 
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aver_r_theta Average of the individual reliabilities (trait level). 

reli_PDD Marginal reliability of the PDD estimates. 

aver_r_PDD Average of the individual reliabilities (PDD). 

LR_stat Likelihood ratio statistic. 

Q_Chi_square Approximate Chi Square statistic with N degrees of freedom. 
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6. Empirical example 
 

The following example uses the dataset included in the InDisc package: CTAC35, 

which is a dataset containing 758 observations and 35 items, corresponding to the 

CTAC questionnaire (Pallero, Ferrando, & Lorenzo-Seva, 1998). The CTAC 

questionnaire measures anxiety in situations related to visual deficit, is intended to be 

used in the general adult population with severe visual impairment, and uses a 5-point 

Likert format. CTAC was designed to assess two subscales: cognitive anxiety and 

physiological anxiety, but since they are highly correlated, they can be considered 

related subscales from an overall anxiety scale. 

The usage of the InDisc package should be the following: 

> InDisc(SCO = CTAC35, nquad = 30, model = “graded”, approp = 

TRUE, display = TRUE) 

The output looks like the following: 

$INDIES 
           theta       PDD PSD (theta)  PSD (PDD)   th reli  PDD reli 
FAC -0.065374703 0.2582460   0.1497897 0.12049315 0.9775631 0.9662687 
     0.022498430 0.7283670   0.2061971 0.38846581 0.9574828 0.7337612 
    -0.191278258 0.3555251   0.1643611 0.15737810 0.9729854 0.9437947 
     0.643456856 0.5580985   0.1918494 0.29533356 0.9631938 0.8266386 
     1.316853765 0.3571208   0.1791750 0.18185971 0.9678963 0.9263364 
     0.675945448 1.7302302   0.2779443 0.81747116 0.9227470 0.3836153 
    -1.655209645 0.7795517   0.2840174 0.50440865 0.9193341 0.6204424 
    -2.277606086 0.3663463   0.2985836 0.22130346 0.9108478 0.8946487 
    -1.183982073 0.3013486   0.1752420 0.15933348 0.9692902 0.9424702 
     0.970947058 0.3051314   0.1571833 0.15264381 0.9752934 0.9469487 
[ reached getOption("max.print") -- omitted 748 rows ] 
 
 
$Degrees_of_freedom 
[1] 560 
 
$Model_Chi_square 
[1] 3441.21 
 
$RMSR 
[1] 0.06176572 
 
$TLI 
[1] 0.7471719 
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$RMSEA 
[1] 0.09051577 
 
$EVARI 
[1] 0.8168513 
 
$reli_theta 
[1] 0.9446712 
 
$aver_r_theta 
[1] 0.9446712 
 
$reli_PDD 
[1] 0.6344124 
 
$aver_r_PDD 
[1] 0.7152701 
 
$LR_stat 
[1] 0.656112 
 
$Q_Chi_square 
[1] 3605.168 

 

We start first by assessing the appropriateness of the fitted model (bottom rows 

in the table above). The unidimensional UVA model chosen here fitted the correlation 

matrix acceptably well, mainly in terms of the residual indices. As for the 

appropriateness of the DTGRM compared to that of the standard model, the 

approximate chi square statistic suggests that there is non-negligible variation in the 

PDD values across individuals, which supports the use of the dual model. However, this 

variation neither is excessively large in terms of the LR statistic. 

We turn now to the scoring results. The first rows above, show the theta point 

estimates, the PDD point estimates, and their corresponding PSDs and reliabilities for 

each participant (this example shows the first 10 ones). Thus, for the first respondent, 

the trait point estimate (i.e. anxiety level) is average (near the zero mean), and the 

discriminal dispersion is relatively low (compared to the average PDD estimate of 

0.81). So, it can be inferred that this individual answered the CTAC items with high 

consistency. Both the reliabilities corresponding to the trait and PDD point estimates for 
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this individual are rather high, which implies that the point estimates are accurate and 

can be trusted.   

The marginal reliabilities are also quite acceptable. That of the trait estimates is 

similar to the conventional reliability of test scores that can be obtained with a good 

personality test (0.944 is quite good by all standards). The marginal reliability of the 

PDDs is smaller, but this is an expected result (see Ferrando, 2004). For the PDD 

standards it can be considered quite acceptable. Overall, the results suggest that: (a) the 

anxiety levels can be assessed with high accuracy for most of the individuals of the 

population for which the CTAC is intended, and (b) the PDDs can be assessed with 

reasonable accuracy in most individuals of this population. Overall, the results suggest 

that the choice of the DTGRM is appropriate and provide useful information beyond 

that can be obtained from the standard model. 
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